首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Saccharomyces cerevisiae CDC25 gene and closely homologous genes in other eukaryotes encode guanine nucleotide exchange factors for Ras proteins. We have determined the minimal region of the budding yeast CDC25 gene capable of activity in vivo. The region required for full biological activity is approximately 450 residues and contains two segments homologous to other proteins: one found in both Ras-specific exchange factors and the more distant Bud5 and Lte1 proteins, and a smaller segment of 48 amino acids found only in the Ras-specific exchange factors. When expressed in Escherichia coli as a fusion protein, this region of CDC25 was found to be a potent catalyst of GDP-GTP exchange on yeast Ras2 as well as human p21H-ras but inactive in promoting exchange on the Ras-related proteins Ypt1 and Rsr1. The CDC25 fusion protein catalyzed replacement of GDP-bound to Ras2 with GTP (activation) more efficiently than that of the reverse reaction of replacement of GTP for GDP (deactivation), consistent with prior genetic analysis of CDC25 which indicated a positive role in the activation of Ras. To more directly study the physical interaction of CDC25 and Ras proteins, we developed a protein-protein binding assay. We determined that CDC25 binds tightly to Ras2 protein only in the absence of guanine nucleotides. This higher affinity of CDC25 for the nucleotide-free form than for either the GDP- or GTP-bound form suggests that CDC25 catalyzes exchange of guanine nucleotides bound to Ras proteins by stabilization of the transitory nucleotide-free state.  相似文献   

2.
Serum stimulates cells to increase their proportion of Ras protein in the active GTP-bound state. We have recently identified four types (I to IV) of apparently full-length cDNAs from a single mammalian gene, called CDC25Mm or GRF, which is homologous to the Ras-specific exchange factor CDC25 of S. cerevisiae. The largest cDNA (type IV) is brain specific, with the other three classes, although they have distinct 5' ends, essentially representing progressive N-terminal deletions of this cDNA. When placed in a retroviral expression vector, all four types of cDNAs induced morphologic transformation of NIH 3T3 cells and an increase in the basal level of GTP.Ras. Serum stimulation of these transformants lead to a further increase in GTP.Ras only in cells expressing the type IV cDNA. Each type of GRF protein was found in cytosolic and membrane fractions, and the protein in each fraction could stimulate guanine nucleotide release from GDP.Ras in vitro. When NIH 3T3 cells and cells expressing the type IV protein were transfected with two versions of a mutant ras gene, one encoding membrane-associated Ras protein and the other encoding a cytosolic Ras protein, the basal levels of GTP bound to both forms of the mutant Ras protein were significantly higher in the cells expressing the type IV protein. However, serum increased the level of GTP bound to the membrane-associated mutant Ras protein in NIH 3T3 cells and in cells expressing the type IV protein but not in cells expressing the cytosolic version of the Ras protein. We conclude that each type of CDC25Mm induces cell transformation via the ability of its C terminus to stimulate guanine nucleotide exchange on Ras, the presence of N-terminal sequences is associated with a serum-dependent change in GTP.Ras, and the serum-dependent increase in GTP.Ras by exogenous CDC25Mm or by endogenous exchange factors probably requires membrane association of both Ras and the exchange factor.  相似文献   

3.
Previously we found that negatively charged residues at positions 62, 63, and 69 of H-Ras are involved in binding to the CDC25 guanine nucleotide exchange factor (GEF). Using site-directed mutagenesis, we have changed conserved, positively charged residues of CDC25GEF to glutamic acid. We find the nonfunctional CDC25R1374E mutant and the nonfunctional H-RasE63K mutant cooperate in suppression of the loss of CDC25 function in Saccharomyces cerevisiae. Also, peptides corresponding to residues 1364 to 1383 of CDC25GEF inhibit interaction between GEFs and H-Ras. We propose that residues 1374 of CDC25GEF and 63 of H-Ras form an ion pair and that when this ion pair is reversed, functional interaction can still occur.  相似文献   

4.
The CDC25 gene product is a guanine nucleotide exchange factor for Ras proteins in yeast. Recently it has been suggested that the intracellular levels of guanine nucleotides may influence the exchange reaction. To test this hypothesis we measured the levels of nucleotides in yeast cells under different growth conditions and the relative amount of Ras2-GTP. The intracellular GTP/GDP ratio was found to be very sensitive to growth conditions: the ratio is high, close to that of ATP/ADP during exponential growth, but it decreases rapidly before the beginning of stationary phase, and it drops further under starvation conditions. The addition of glucose to glucose-starved cells causes a fast increase of the GTP/GDP ratio. The relative amount of Ras2-GTP changes in a parallel way suggesting that there is a correlation with the cytosolic GTP/GDP ratio. In addition 'in vitro' mixed-nucleotide exchange experiments done on purified Ras2 protein demonstrated that the GTP and GDP concentrations influence the extent of Ras2-GTP loading giving further support to their possible regulatory role.  相似文献   

5.
GDP-dissociation stimulators (GDSs) are the key element for the regeneration of the active state of ras proteins, but despite intensive investigations, little is so far known about their functional and structural properties, particularly in mammals. A growing number of genes from various organisms have been postulated to encode GDSs on the basis of sequence similarity with the Saccharomyces cerevisiae CDC25 gene, whose product acts as a GDS of RAS proteins. However, except for CDC25 and the related SDC25 C-domain, no biochemical evidence of ras GDS activity for these CDC25-like proteins has yet been available. We show that the product of a recently isolated mouse CDC25-like gene (CDC25Mm) can strongly enhance (more than 1000 times) the GDP release from both human c-Ha-ras p21 and yeast RAS2 in vitro. As a consequence, the CDC25Mm induces a rapid formation of the biologically active Ras.GTP complex. This GDS is much more active on the GDP than on the GTP complex and has a narrow substrate specificity, since it was found to be inactive on several ras-like proteins. The mouse GDS can efficiently substitute for yeast CDC25 in an in vitro adenylylcyclase assay on RAS2 cdc25 yeast membranes. Our results show that a cloned GDP to GTP exchange factor of mammalian ras belongs to the novel family of CDC25-like proteins.  相似文献   

6.
T Prigozy  E Gonzales  D Broek 《Gene》1992,117(1):67-72
In the budding yeast, Saccharomyces cerevisiae, the function of wild-type Ras proteins is dependent on the CDC25 protein, which promotes the exchange of guanine nucleotides bound to Ras. To facilitate the identification of proteins which similarly regulate Ras function in higher eukaryotes, we have identified the CDC25 gene from another budding yeast, Saccharomyces kluyveri, by low-stringency hybridization to an S. cerevisiae CDC25 restriction fragment. This protein, SKCDC25, shares significant amino acid homology with CDC25, SCD25, and Ste6 of Schizosaccharomyces pombe in the C-terminal portion of the protein. The expression of SKCDC25 in a temperature-sensitive cdc25 strain of S. cerevisiae complements the loss of endogenous CDC25 activity. The identification of the highly conserved C-terminal sequences, which direct bona fide CDC25 activity within these proteins, will aid in the isolation of CDC25 genes from higher eukaryotes.  相似文献   

7.
The overexpression of some human proteins can cause interference with the Ras signal transduction pathway in the yeast Saccharomyces cerevisiae. The functional block is located at the level of the effector itself, since these proteins do not suppress activating mutations further downstream in the same pathway. We now demonstrate, with in vivo and in vitro experiments, that the protein encoded by one human cDNA (clone 99) can interact directly with yeast Ras2p and with human H-Ras protein, and we have named this gene rin1 (Ras interaction/interference). The interaction between Ras and Rin1 is enhanced when Ras is bound to GTP. Rin1 is not able to interact with either an effector mutant or a dominant negative mutant of H-Ras. Thus, Rin1 displays a human H-Ras interaction profile that is the same as that seen for Raf1 and yeast adenylyl cyclase, two known effectors of Ras. Moreover, Raf1 directly competes with Rin1 for binding to H-Ras in vitro. Unlike Raf1, however, the Rin1 protein resides primarily at the plasma membrane, where H-Ras is localized. These data are consistent with Rin1 functioning in mammalian cells as an effector or regulator of H-Ras.  相似文献   

8.
The product of the CDC25 gene of Saccharomyces cerevisiae, in its capacity as an activator of the RAS/cyclic AMP pathway, is required for initiation of the cell cycle. In this report, we provide an identification of Cdc25p, the product of the CDC25 gene, and evidence that it promotes exchange of guanine nucleotides bound to Ras in vitro. Extracts of strains containing high levels of Cdc25p catalyze both removal of GDP from and the concurrent binding of GTP to Ras. This same activity is also obtained with an immunopurified Cdc25p-beta-galactosidase fusion protein, suggesting that Cdc25p participates directly in the exchange reaction. This biochemical activity is consistent with previous genetic analysis of CDC25 function.  相似文献   

9.
We have conducted a genetic screen for mutations that decrease the effectiveness of signaling by a protein tyrosine kinase, the product of the Drosophila melanogaster sevenless gene. These mutations define seven genes whose wild-type products may be required for signaling by sevenless. Four of the seven genes also appear to be essential for signaling by a second protein tyrosine kinase, the product of the Ellipse gene. The putative products of two of these seven genes have been identified. One encodes a ras protein. The other locus encodes a protein that is homologous to the S. cerevisiae CDC25 protein, an activator of guanine nucleotide exchange by ras proteins. These results suggest that the stimulation of ras protein activity is a key element in the signaling by sevenless and Ellipse and that this stimulation may be achieved by activating the exchange of GTP for bound GDP by the ras protein.  相似文献   

10.
Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.  相似文献   

11.
The yeast Saccharomyces cerevisiae serves as an excellent genetic tool for the analysis of protein +/- protein interactions. The most common system, used to date, is the two-hybrid system. Although proven very powerful, the two-hybrid system exhibits several inherent problems and limitations. Recently, two alternative systems have been described that take advantage of the fact that localization of signal transduction effectors to the inner leaflet of the plasma membrane is absolutely necessary for yeast viability. These effectors can either be the Ras guanyl nucleotide exchange factor or Ras itself. The yeast strain used in both systems is a temperature-sensitive mutant in the yeast Ras guanyl nucleotide exchange factor, CDC25. Membrane localization of these effectors is achieved via protein +/- protein interaction. Each system can be used to test interaction between known protein pairs, as well as for isolation of novel protein interactions. Described here are the scientific and technical steps to be considered for both protein recruitment systems.  相似文献   

12.
The Ras family of small GTPases control diverse signaling pathways through a conserved “switch” mechanism, which is turned on by binding of GTP and turned off by GTP hydrolysis to GDP. Full understanding of GTPase switch functions requires reliable, quantitative assays for nucleotide binding and hydrolysis. Fluorescently labeled guanine nucleotides, such as 2′(3′)-O-(N-methylanthraniloyl) (mant)-substituted GTP and GDP analogs, have been widely used to investigate the molecular properties of small GTPases, including Ras and Rho. Using a recently developed NMR method, we show that the kinetics of nucleotide hydrolysis and exchange by three small GTPases, alone and in the presence of their cognate GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors, are affected by the presence of the fluorescent mant moiety. Intrinsic hydrolysis of mantGTP by Ras homolog enriched in brain (Rheb) is ∼10 times faster than that of GTP, whereas it is 3.4 times slower with RhoA. On the other hand, the mant tag inhibits TSC2GAP-catalyzed GTP hydrolysis by Rheb but promotes p120 RasGAP-catalyzed GTP hydrolysis by H-Ras. Guanine nucleotide exchange factor-catalyzed nucleotide exchange for both H-Ras and RhoA was inhibited by mant-substituted nucleotides, and the degree of inhibition depends highly on the GTPase and whether the assay measures association of mantGTP with, or dissociation of mantGDP from the GTPase. These results indicate that the mant moiety has significant and unpredictable effects on GTPase reaction kinetics and underscore the importance of validating its use in each assay.  相似文献   

13.
H-Ras and N-Ras become activated both at the plasma membrane and in endomembrane structures such as the Golgi apparatus. This compartmentalized activation is relevant from a signaling standpoint, because effector molecules can become activated differently depending on the region of the cell where Ras proteins are activated. An unsolved question in this new regulatory mechanism is the understanding of how Ras proteins become activated in endomembranes. To approach this problem, we have studied the subcellular distribution and activities of a number of Ras guanosine nucleotide exchange factors. Our results indicate that Ras activation at the plasma membrane and endoplasmic reticulum is an unspecific process that can be achieved by most Ras activators. In contrast, GTP loading of Ras at the Golgi is only induced by members of the Ras guanosine nucleotide releasing protein family. In agreement with these observations, Ras guanosine nucleotide releasing proteins are the only Ras activators showing localization in the Golgi. These results indicate that the compartmentalized activation of effector pathways by Ras proteins depends not only on the specific localization of the GTPases but also in the availability of GDP/GTP exchange factors capable of activating Ras proteins in specific subcellular compartments.  相似文献   

14.
Ras proteins bind either GDP or GTP with high affinity. However, only the GTP-bound form of the yeast Ras2 protein is able to stimulate adenylyl cyclase. To identify amino acid residues that play a role in the conversion from the GDP-bound to the GTP-bound state of Ras proteins, we have searched for single amino acid substitutions that selectively affected the binding of one of the two nucleotides. We have found that the replacement of glycine-82 of the Ras2 protein by serine resulted in an increased rate of dissociation of Gpp(NH)p, a nonhydrolysable analog of GTP, while the GDP dissociation rate was not significantly modified. Glycine-82 resides in a region that is highly conserved between the yeast and human proteins. However, this residue is structurally distant from residues that participate in the binding of the nucleotide, as determined from the crystal structure of the human H-ras gene product. Therefore, the ability of the nucleotide binding site to discriminate between GDP and GTP is dependent not only on residues that are spatially close to the nucleotide, but also on distant amino acids. This is in agreement with the role of glycine-82 as a pivot point during the transition from the GDP- to the GTP-bound form of the Ras proteins.  相似文献   

15.
16.
In order to characterize the interaction between the Saccharomyces cerevisiae Cdc25 protein and Harvey-ras (p21H-ras), we have constructed a yeast strain disrupted at the RAS1 and RAS2 loci, expressing both p21H-ras and the catalytic domain of the bovine GTPase activating protein (GAP) and containing the cdc25-2 mutation. Such a strain exhibits a temperature-sensitive phenotype. The shift to the nonpermissive temperature is accompanied by the loss of guanyl nucleotide-dependent activity of adenylylcyclase in vitro. The temperature-sensitive phenotype can be rescued by CDC25 itself, as well as by a plasmid containing a truncated SDC25 gene. In addition, wild type CDC25 significantly improves the guanyl nucleotide response observed in the background of the cdc25ts allele at the permissive temperature in a dosage-dependent manner and restores the guanyl nucleotide response at the restrictive temperature. Both CDC25 and a truncated SDC25 also restored p21H-ras-dependent guanyl nucleotide response in a strain isogenic to the one described above but containing a disrupted CDC25 locus instead of the temperature-sensitive allele. These results suggest that the S. cerevisiae Cdc25 protein interacts with p21H-ras expressed in yeast by promoting GDP-GTP exchange. It follows that the yeast system can be used for characterizing the interaction between guanyl nucleotide exchangers of Ras proteins and mammalian p21H-ras.  相似文献   

17.
A Gross  S Winograd  I Marbach  A Levitzki 《Biochemistry》1999,38(40):13252-13262
Saccharomyces cerevisiae Cdc25 is the prototype Ras GDP/GTP exchange protein. Its C-terminal catalytic domain was found to be highly conserved in the homologues p140(ras-GRF) and Sos. The regulatory domains in each Ras exchanger mediate the signals arriving from upstream elements such as tyrosine kinases for Sos, or Ca2+ and G proteins for p140.(Ras-GRF) In this study, we show that the N-terminal half (NTH) of S. cerevisiae Cdc25, as well as the C-terminal 37 amino acids, is essential for processing the elevation of cAMP in response to glucose. The mammalian p140(ras-GRF) catalytic domain (CGRF) restores glucose signaling in S. cerevisiae only if tethered between the N-terminal half (NTH) of S. cerevisiae Cdc25 and the C-terminal 37 amino acids. The glucose-induced transient elevation in cAMP is nullified or severely hampered by the deletion of domains within the NTH of Cdc25. These deletions, however, do not modify the intrinsic GDP/GTP exchange activity of mutant proteins as compared to native Cdc25. We also show that 7 Ser to Ala mutations at the cAMP-dependent protein kinase putative phosphorylation sites within the NTH of Cdc25 eliminate the descending portion of the glucose response curve, responsible for signal termination. These findings support a dual role of the NTH of Cdc25 in both enabling the glucose signal and being responsible for its attenuation.  相似文献   

18.
19.
Activation of the neuronal Ras GDP/GTP exchange factor (GEF) CDC25Mm/GRF1 is known to be associated with phosphorylation of serine/threonine. To increase our knowledge of the mechanism involved, we have analyzed the ability of several serine/threonine kinases to phosphorylate CDC25Mm in vivo and in vitro. We could demonstrate the involvement of cAMP-dependent protein kinase (PKA) in the phosphorylation of CDC25Mm in fibroblasts overexpressing this RasGEF as well as in mouse brain synaptosomal membranes. In vitro, PKA was found to phosphorylate multiple sites on purified CDC25Mm, in contrast to protein kinase C, calmodulin kinase II, and casein kinase II, which were virtually inactive. Eight phosphorylated serines and one threonine were identified by mass spectrometry and Edman degradation. Most of them were clustered around the Ras exchanger motif/PEST motifs situated in the C-terminal moiety (residues 631-978) preceding the catalytic domain. Ser745 and Ser822 were the most heavily phosphorylated residues and the only ones coinciding with PKA consensus sequences. Substitutions S745D and S822D showed that the latter mutation strongly inhibited the exchange activity of CDC25Mm on Ha-Ras. The multiple PKA-dependent phosphorylation sites on CDC25Mm suggest a complex regulatory picture of this RasGEF. The results are discussed in the light of structural and/or functional similarities with other members of this RasGEF family.  相似文献   

20.
We have analyzed the guanine nucleotides bound to mammalian ras and yeast RAS proteins overexpressed in [32P]orthophosphate-labeled cultures of exponentially growing Saccharomyces cerevisiae cells. Whereas S. cerevisiae RAS1 and RAS2 proteins were immunoprecipitated bound entirely to GDP, mammalian Harvey ras was isolated with GTP and GDP bound in near-equimolar proportions. In a strain overexpressing a RAS2 variant where the RAS unique C-terminal domain was deleted, both GTP and GDP were detected in a ratio of 3:97. Increased amounts of GTP (16-75% of total guanine nucleotide) were observed bound to all ras proteins containing mutations that inhibit GTP hydrolytic activity. Increasing proportions of GTP bound to the various ras proteins correlated with increasing biological potency to bypass cdc25 lethality in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号