首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used mtDNA sequence data from the Tana River red colobus and mangabey to determine how their population genetic structure was influenced by dispersal and habitat fragmentation. The colobus and mangabey are critically endangered primates endemic to gallery forests in eastern Kenya. The forests are a Pliocene–Pleistocene refugium that has recently undergone significant habitat loss and fragmentation due to human activities. We expected both primates to exhibit low levels of genetic diversity due to elevated genetic drift in their small populations, and to show a strong correspondence between genetic and geographic distance due to disruption of gene flow between forests by habitat fragmentation. Additionally, because mangabey females are philopatric, we expected their mtDNA variation to be homogeneous within forest patches but to be heterogeneous between patches. In contrast, colobus have a female-biased dispersal and so we expected their mtDNA variation to be homogeneous within and between forest patches. We found high levels of haplotype and nucleotide diversity as well as high levels of sequence divergence between haplotype groups in both species. The red colobus had significantly higher genetic variation than the mangabey did. Most of the genetic variation in both primates was found within forest fragments. Although both species showed strong inter-forest patch genetic structure we found no correspondence between genetic and geographic distances for the two primates. We attributed the high genetic diversity to recent high effective population size, and high sequence divergence and strong genetic structures to long-term habitat changes in the landscape.  相似文献   

2.
Abstract Many natural populations in areas of continuous habitat exhibit some form of local genetic structure. Anthropogenic habitat fragmentation can also strongly influence the dynamics of gene flow between populations. We used eight microsatellite markers to investigate the population genetic structure of an abundant forest species, the Australian bush rat (Rattus fuscipes), in the subtropical forests of south‐east Queensland. Five sites were sampled, allowing pairwise comparisons within continuous habitat and across clearings. Weak, but significant population differentiation and a significant pattern of isolation by distance was detected over the small scale (<10 km) of this study. Fine‐scale analysis at a single site (<1 km) showed a significant correlation between individual female genetic distance and geographical distance, but no similar pattern among male individuals. There was no evidence of increased population differentiation across clearings relative to comparisons within continuous forest. This was attributed to dispersal within corridors of remnant and revegetated habitat between the forested areas. We concluded that an inherently restricted dispersal ability, female philopatry and natural habitat heterogeneity play an important part in the development of genetic structure among populations of R. fuscipes. It is important to understand the relationship between landscape features and the pattern of gene flow among continuous populations, as this allows us to predict the impact of fragmentation on natural populations.  相似文献   

3.
Habitat fragmentation may strongly reduce individuals’ dispersal among resource patches and hence influence population distribution and persistence. We studied the impact of landscape heterogeneity on the dispersal of the golden‐crowned sifaka (Propithecus tattersalli), an endangered social lemur species living in a restricted and highly fragmented landscape. We combined spatial analysis and population genetics methods to describe population units and identify the environmental factors which best predict the rates and patterns of genetic differentiation within and between populations. We used non‐invasive methods to genotype 230 individuals at 13 microsatellites in all the main forest fragments of its entire distribution area. Our analyses suggest that the Manankolana River and geographical distance are the primary structuring factors, while a national road crossing the region does not seem to impede gene flow. Altogether, our results are in agreement with a limited influence of forest habitat connectivity on gene flow patterns (except for North of the species’ range), suggesting that dispersal is still possible today among most forest patches for this species. Within forest patches, we find that dispersal is mainly among neighbouring social groups, hence confirming previous behavioural observations.  相似文献   

4.
The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants (Loxodonta cyclotis) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male‐mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male‐mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.  相似文献   

5.
The North American red squirrel ( Tamiasciurus hudsonicus ) has expanded its range into the central hardwoods of the United States in conjunction with increasing forest fragmentation and declining gray squirrel ( Sciurus carolinensis ) populations. We used translocation experiments and patch occupancy data to test for interspecific differences in mobility and sensitivity to habitat loss and modification by agriculture. We released squirrels in fencerows to test the hypothesis that gray squirrels display inferior mobility relative to red and fox ( S. niger ) squirrels. Elapsed time to movement from fencerows for 76 individuals increased with distance to forest patches and harvesting of crops. Gray and red squirrels took longer to move from fencerows than fox squirrels, and gray squirrels were less successful at moving from fencerows than red and fox squirrels. Ecologically scaled landscape indices revealed the degree to which interspecific differences in mobility and individual area requirements accounted for the occurrence of these species across landscapes. Gray squirrel distribution was constrained both by individual area requirements and dispersal ability. Occurrence of red and fox squirrels was related to patch size but was unaffected by landscape connectivity.  相似文献   

6.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

7.
Tree species are thought to be relatively resistant to habitat fragmentation because of their longevity and their aptitude for extensive gene flow, although recent empirical studies have reported negative genetic consequences, in particular after long-term habitat fragmentation in European temperate regions. Yet the response of each species to habitat loss may differ greatly depending on their biological attributes, in particular seed dispersal ability. In this study, we used demographic and molecular data to investigate the genetic consequences of chronic habitat fragmentation in remnant populations of Taxus baccata in the Montseny Mountains, northeast Spain. The age structure of populations revealed demographic bottlenecks and recruitment events associated with exploitation and management practices. We found a strong genetic structure, both at the landscape and within-population levels. We also detected high levels of inbreeding for a strictly outcrossing species. Chronic forest fragmentation resulting from long-term exploitation in the Montseny Mountains seems the most plausible explanation for the strong genetic structure observed. Our results support the view that, contrary to some predictions, tree species are not buffered from the adverse effects of habitat fragmentation, even in the case of species with a high dispersal potential.  相似文献   

8.
Animal dispersal and subsequent settlement is a key process in the life history of many organisms, when individuals use demographic and environmental cues to target post-dispersal habitats where fitness will be highest. To investigate the hypothesis that environmental disturbance (habitat fragmentation) may alter these cues, we compared dispersal patterns of 60 red squirrels (Sciurus vulgaris) in three study sites that differ in habitat composition and fragmentation. We determined dispersal distances, pre- and post-dispersal habitat types and survival using a combination of capture–mark–recapture, radio-tracking and genetic parentage assignment. Most (75%) squirrels emigrated from the natal home range with mean dispersal distance of 1,014 ± 925 m (range 51–4,118 m). There were no sex-related differences in dispersal patterns and no differences in average dispersal distance, and the proportion of dispersers did not differ between sites. In one of the sites, dispersers settled in patches where density was lower than in the natal patch. In the least fragmented site, 90% of animals settled in the natal habitat type (habitat cuing) against 44–54% in the more strongly fragmented sites. Overall, more squirrels settled in the natal habitat type than expected based on habitat availability, but this was mainly due to individuals remaining within the natal wood. In the highly fragmented landscape, habitat cuing among emigrants did not occur more frequently than expected. We concluded that increased habitat fragmentation seemed to reduce reliable cues for habitat choice, but that dispersing squirrels settled in patches with lower densities of same-sex animals than at the natal home range or patch, independent of degree of fragmentation.  相似文献   

9.
Habitat loss and fragmentation are the leading causes of species’ declines and extinctions. A key component of studying population response to habitat alteration is to understand how fragmentation affects population connectivity in disturbed landscapes. We used landscape genetic analyses to determine how habitat fragmentation due to timber harvest affects genetic population connectivity of the coastal tailed frog (Ascaphus truei), a forest-dwelling, stream-breeding amphibian. We compared rates of gene flow across old-growth (Olympic National Park) and logged landscapes (Olympic National Forest) and used spatial autoregression to estimate the effect of landscape variables on genetic structure. We detected higher overall genetic connectivity across the managed forest, although this was likely a historical signature of continuous forest before timber harvest began. Gene flow also occurred terrestrially, as connectivity was high across unconnected river basins. Autoregressive models demonstrated that closed forest and low solar radiation were correlated with increased gene flow. In addition, there was evidence for a temporal lag in the correlation of decreased gene flow with harvest, suggesting that the full genetic impact may not appear for several generations. Furthermore, we detected genetic evidence of population bottlenecks across the Olympic National Forest, including at sites that were within old-growth forest but surrounded by harvested patches. Collectively, this research suggests that absence of forest (whether due to natural or anthropogenic changes) is a key restrictor of genetic connectivity and that intact forested patches in the surrounding environment are necessary for continued gene flow and population connectivity.  相似文献   

10.
Hu Y  Guo Y  Qi D  Zhan X  Wu H  Bruford MW  Wei F 《Molecular ecology》2011,20(13):2662-2675
Clarification of the genetic structure and population history of a species can shed light on the impacts of landscapes, historical climate change and contemporary human activities and thus enables evidence‐based conservation decisions for endangered organisms. The red panda (Ailurus fulgens) is an endangered species distributing at the edge of the Qinghai‐Tibetan Plateau and is currently subject to habitat loss, fragmentation and population decline, thus representing a good model to test the influences of the above‐mentioned factors on a plateau edge species. We combined nine microsatellite loci and 551 bp of mitochondrial control region (mtDNA CR) to explore the genetic structure and demographic history of this species. A total of 123 individuals were sampled from 23 locations across five populations. High levels of genetic variation were identified for both mtDNA and microsatellites. Phylogeographic analyses indicated little geographic structure, suggesting historically wide gene flow. However, microsatellite‐based Bayesian clustering clearly identified three groups (Qionglai‐Liangshan, Xiaoxiangling and Gaoligong‐Tibet). A significant isolation‐by‐distance pattern was detected only after removing Xiaoxiangling. For mtDNA data, there was no statistical support for a historical population expansion or contraction for the whole sample or any population except Xiaoxiangling where a signal of contraction was detected. However, Bayesian simulations of population history using microsatellite data did pinpoint population declines for Qionglai, Xiaoxiangling and Gaoligong, demonstrating significant influences of human activity on demography. The unique history of the Xiaoxiangling population plays a critical role in shaping the genetic structure of this species, and large‐scale habitat loss and fragmentation is hampering gene flow among populations. The implications of our findings for the biogeography of the Qinghai‐Tibetan Plateau, subspecies classification and conservation of red pandas are discussed.  相似文献   

11.
Habitat fragmentation can have a range of negative demographic and genetic impacts on disturbed populations. Dispersal barriers can be created, reducing gene flow and increasing population differentiation and inbreeding in isolated habitat remnants. Aggregated retention is a form of forestry that retains patches of forests as isolated island or connected edge patches, with the aim of ‘lifeboating’ species and processes, retaining structural features and improving connectivity. Swamp rats (Rattus lutreolus) are a cover‐dependent species that are sensitive to habitat removal. We examined the effects of aggregated retention forestry and forestry roads in native wet Eucalyptus forests on swamp rat gene flow and population genetic structure. We characterized neighbourhood size in unlogged forest to provide a natural state for comparison, and examined population structure at a range of spatial scales, which provided context for our findings. Tests of pairwise relatedness indicated significant differentiation between island and edge populations in aggregated retention sites, and across roads in unlogged sites. Spatial autocorrelation suggested a neighbourhood size of 42–55 m and revealed male‐biased dispersal. We found no genetic isolation by geographical distance at larger (>2.3 km) scales and populations were all significantly differentiated. Our results suggest that removal of mature forest creates barriers for swamp rat dispersal. In particular, roads may have long‐term impacts, while harvesting of native forests is likely to create only short‐term dispersal barriers at the local scale, depending on the rate of regeneration.  相似文献   

12.
Habitat loss and fragmentation can have detrimental effects on all levels of biodiversity, including genetic variation. Most studies that investigate genetic effects of habitat loss and fragmentation focus on analysing genetic data from a single landscape. However, our understanding of habitat loss effects on landscape-wide patterns of biodiversity would benefit from studies that are based on quantitative comparisons among multiple study landscapes. Here, we use such a landscape-level study design to compare genetic variation in the forest-specialist marsupial Marmosops incanus from four 10,000-hectare Atlantic forest landscapes which differ in the amount of their remaining native forest cover (86, 49, 31, 11 %). Additionally, we used a model selection framework to evaluate the influence of patch characteristics on genetic variation within each landscape. We genotyped 529 individuals with 12 microsatellites to statistically compare estimates of genetic diversity and genetic differentiation in populations inhabiting different forest patches within the landscapes. Our study indicates that before the extinction of the specialist species (here in the 11 % landscape) genetic diversity is significantly reduced in the 31 % landscape, while genetic differentiation is significantly higher in the 49 and 31 % landscapes compared to the 86 % landscape. Results further provide evidence for non-proportional responses of genetic diversity and differentiation to increasing habitat loss, and suggest that local patch isolation impacts gene flow and genetic connectivity only in the 31 % landscape. These results have high relevance for analysing landscape genetic relationships and emphasize the importance of landscape-level study designs for understanding habitat loss effects on all levels of biodiversity.  相似文献   

13.
Increasing habitat fragmentation poses an immediate threat to population viability, as gene flow patterns are changed in these altered landscapes. Patterns of genetic divergence can potentially reveal the impact of these shifts in landscape connectivity. However, divergence patterns not only carry the signature of altered contemporary landscapes, but also historical ones. When considered separately, both recent and historical landscape structure appear to significantly affect connectivity among 51 wood frog ( Rana sylvatica ) populations. However, by controlling for correlations among landscape structure from multiple time periods, we show that patterns of genetic divergence reflect recent landscape structure as opposed to landscape structure prior to European settlement of the region (before 1850s). At the same time, within-population genetic diversities remain high and a genetic signature of population bottlenecks is lacking. Together, these results suggest that metapopulation processes – not drift-induced divergence associated with strong demographic bottlenecks following habitat loss – underlie the strikingly rapid consequences of temporally shifting landscape structure on these amphibians. We discuss the implications of these results in the context of understanding the role of population demography in the adaptive variation observed in wood frog populations.  相似文献   

14.
The jaguar (Panthera onca), the largest felid in the American Continent, is currently threatened by habitat loss, fragmentation and human persecution. We have investigated the genetic diversity, population structure and demographic history of jaguars across their geographical range by analysing 715 base pairs of the mitochondrial DNA (mtDNA) control region and 29 microsatellite loci in approximately 40 individuals sampled from Mexico to southern Brazil. Jaguars display low to moderate levels of mtDNA diversity and medium to high levels of microsatellite size variation, and show evidence of a recent demographic expansion. We estimate that extant jaguar mtDNA lineages arose 280 000-510 000 years ago (95% CI 137 000-830 000 years ago), a younger date than suggested by available fossil data. No strong geographical structure was observed, in contrast to previously proposed subspecific partitions. However, major geographical barriers such as the Amazon river and the Darien straits between northern South America and Central America appear to have restricted historical gene flow in this species, producing measurable genetic differentiation. Jaguars could be divided into four incompletely isolated phylogeographic groups, and further sampling may reveal a finer pattern of subdivision or isolation by distance on a regional level. Operational conservation units for this species can be defined on a biome or ecosystem scale, but should take into account the historical barriers to dispersal identified here. Conservation strategies for jaguars should aim to maintain high levels of gene flow over broad geographical areas, possibly through active management of disconnected populations on a regional scale.  相似文献   

15.
N Yuan  H P Comes  Y N Cao  R Guo  Y H Zhang  Y X Qiu 《Heredity》2015,114(6):544-551
Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland–island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat ‘insularization'' at different temporal and spatial scales.  相似文献   

16.
17.
Formica aquilonia wood ants are forest specialists which play a key role in the ecology of forests in Europe. Many of the Scottish populations at the edge of the species distribution range occur in highly fragmented landscapes. We used ten microsatellite loci to study the genetic diversity and structure of populations from two contrasting regions (Inverpolly and the Trossachs) to set the Scottish populations in the context of conspecific populations in mainland Europe. Historically, both study regions have experienced extreme habitat loss and fragmentation over several centuries. Inverpolly has remained fragmented whereas large scale reforestation over the last century has greatly increased the forested area in the Trossachs. Despite the long history of fragmentation, genetic diversity in the Scottish populations was greater than in the populations in mainland Europe. Genetic diversity was similar in the two Scottish regions and no evidence of inbreeding was detected. However, the populations in Inverpolly showed more evidence of genetic bottlenecks, possibly due to more frequent stochastic events such as moorland fires. The ant populations in individual forests were genetically distinct and we detected no contemporary gene flow between forests. The most intensively studied forest where non-native conifer plantations now occupy the matrix between the remaining ancient woodland fragments showed evidence that admixture and gene flow between nests was reducing the past differentiation. This may reflect a dynamic response to the reconnection of previously isolated populations in forest fragments by recent reforestation.  相似文献   

18.
It is not known how the profoundly complex topography and habitat heterogeneity generated by the uplift of the Qinghai‐Tibetan Plateau (QTP) during the late Tertiary affected population genetic structure of endangered Taxus yunnanensis. In addition, the effects of habitat fragmentation due to anthropogenic disturbance on genetic diversity and population differentiation of this species have not been studied. T. yunnanensis is an ancient tree/shrub mainly distributed in southwest China. Recently, the species has suffered a sharp decline due to excessive logging for its famous anticancer metabolite taxol, resulting in smaller and more isolated populations. To understand the phylogeography and genetic consequences of habitat fragmentation of this endangered species, using 11 polymorphic microsatellites, we genotyped 288 individuals from 14 populations from a range‐wide sampling in China. Our results suggest that two different population groups that were once isolated have persisted in situ during glacial periods in both areas, and have not merged since. Habitat fragmentation has led to significant genetic bottlenecks, high inbreeding and population divergence in this species. The two different population groups of T. yunnanensis could be attributed to restricted gene flow caused through isolation by geographical barriers and by habitat heterogeneity during uplift of the QTP, or the existence of two separate glacial refugia during the Pleistocene. In situ and ex situ conservation of the two Evolutionarily Significant Units (ESUs), artificial gene flow between populations and a comprehensive understanding of the pollination system in this endangered species are suggested from this study.  相似文献   

19.
To examine the effects of recent habitat fragmentation, we assayed genetic diversity in a rain forest endemic lizard, the prickly forest skink (Gnypetoscincus queenslandiae), from seven forest fragments and five sites in continuous forest on the Atherton tableland of northeastern Queensland, Australia. The rain forest in this region was fragmented by logging and clearing for dairy farms in the early 1900s and most forest fragments studied have been isolated for 50-80 years or nine to 12 skink generations. We genotyped 411 individuals at nine microsatellite DNA loci and found fewer alleles per locus in prickly forest skinks from small rain forest fragments and a lower ratio of allele number to allele size range in forest fragments than in continuous forest, indicative of a decrease in effective population size. In contrast, and as expected for populations with small neighbourhood sizes, neither heterozygosity nor variance in allele size differed between fragments and sites in continuous forests. Considering measures of among population differentiation, there was no increase in FST among fragments and a significant isolation by distance pattern was identified across all 12 sites. However, the relationship between genetic (FST) and geographical distance was significantly stronger for continuous forest sites than for fragments, consistent with disruption of gene flow among the latter. The observed changes in genetic diversity within and among populations are small, but in the direction predicted by the theory of genetic erosion in recently fragmented populations. The results also illustrate the inherent difficulty in detecting genetic consequences of recent habitat fragmentation, even in genetically variable species, and especially when effective population size and dispersal rates are low.  相似文献   

20.
Habitat loss and resultant fragmentation are major threats to biodiversity, particularly in tropical and subtropical ecosystems. It is increasingly urgent to understand fragmentation effects, which are often complex and vary across taxa, time and space. We determined whether recent fragmentation of Atlantic forest is causing population subdivision in a widespread and important Neotropical seed disperser: Artibeus lituratus (Chiroptera: Phyllostomidae). Genetic structure within highly fragmented forest in Paraguay was compared to that in mostly contiguous forest in neighbouring Misiones, Argentina. Further, observed genetic structure across the fragmented landscape was compared with expected levels of structure for similar time spans in realistic simulated landscapes under different degrees of reduction in gene flow. If fragmentation significantly reduced successful dispersal, greater population differentiation and stronger isolation by distance would be expected in the fragmented than in the continuous landscape, and genetic structure in the fragmented landscape should be similar to structure for simulated landscapes where dispersal had been substantially reduced. Instead, little genetic differentiation was observed, and no significant correlation was found between genetic and geographic distance in fragmented or continuous landscapes. Furthermore, comparison of empirical and simulated landscapes indicated empirical results were consistent with regular long‐distance dispersal and high migration rates. Our results suggest maintenance of high gene flow for this relatively mobile and generalist species, which could be preventing or significantly delaying reduction in population connectivity in fragmented habitat. Our conclusions apply to A. lituratus in Interior Atlantic Forest, and do not contradict broad evidence that habitat fragmentation is contributing to extinction of populations and species, and poses a threat to biodiversity worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号