首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hexokinase (HXK, EC 2.7.1.1) plays an important role in the metabolism and glucose signalling. To examine the characteristics of HXK gene family in rice, the subcellular localizations of ten hexokinases (OsHXK1 — OsHXK10) were determined using OsHXK::GFP fusion proteins in tobacco mesophyll protoplasts. As was previously demonstrated, OsHXK4 was detected in the chloroplast stroma, OsHXK5 and OsHXK6 in the mitochondria, and OsHXK7 and OsHXK10 in the cytoplasm. In the present study, OsHXKs were clearly divided into three types (A, B, C) based on their N-terminal sequences. The new type-C HXKs in plants, OsHXK1, OsHXK7 and OsHXK8, which lack the plastidic transit peptide and the membrane anchor domain, were detected not only in the cytoplasm but also in the nucleus. The type-B HXKs, OsHXK2, OsHXK3, OsHXK9 and OsHXK10, which contained a membrane anchor domain, were distinctly localized in the mitochondria. These results suggest that OsHXKs localized in different cell compartments may be involved in the glucose signalling-related gene expression during growth and development of rice.  相似文献   

2.
3.
Hexokinase (HXK) as a moonlighting protein involves in glucose metabolism and signalling to regulate growth and development in plants. Therefore, the clarification for the structural properties of OsHXK7 (Oryza sativa Hexokinase 7) is essential to understand its role mechanism associated with the Glc signalling and metabolism. In this study, the structural characteristics of OsHXK7 (Oryza sativa Hexokinase 7) were identified. In the fluorescence spectrum, the Trp peak representing OsHXK7 binding to D-glucose (D-Glc) and 2-deoxyglucose (2-dG) showed an obvious blue shift. The distinct change in the secondary structure of OsHXK7 after binding to Glc was also detected in circular dichroism spectra. Using superimposed modelling, OsHXK7 showed a Glc-induced structural change, in which the 76th glycine, 148th serine and 256th tryptophan were contained within the pocket region. It was further shown by site-directed mutagenesis that the 76th glycine and the 256th tryptophan, but not the 148th serine, are the pivotal sites of OsHXK7 that maintain its catalytic activity and intrinsic blue shift fluorescence. These results suggest that OsHXK7 binding to Glc leads to a conformational change, that is likely essential for the function of OsHXK7 in Glc signalling and metabolism during plant growth and development.  相似文献   

4.
Hexokinase II is an enzyme central to glucose metabolism and glucose repression in the yeast Saccharomyces cerevisiae. Deletion of HXK2, the gene which encodes hexokinase II, dramatically changed the physiology of S. cerevisiae. The hxk2-null mutant strain displayed fully oxidative growth at high glucose concentrations in early exponential batch cultures, resulting in an initial absence of fermentative products such as ethanol, a postponed and shortened diauxic shift, and higher biomass yields. Several intracellular changes were associated with the deletion of hexokinase II. The hxk2 mutant had a higher mitochondrial H+-ATPase activity and a lower pyruvate decarboxylase activity, which coincided with an intracellular accumulation of pyruvate in the hxk2 mutant. The concentrations of adenine nucleotides, glucose-6-phosphate, and fructose-6-phosphate are comparable in the wild type and the hxk2 mutant. In contrast, the concentration of fructose-1,6-bisphosphate, an allosteric activator of pyruvate kinase, is clearly lower in the hxk2 mutant than in the wild type. The results suggest a redirection of carbon flux in the hxk2 mutant to the production of biomass as a consequence of reduced glucose repression.  相似文献   

5.
6.
ARGONAUTE (AGO) proteins play crucial roles in plant defence against virus invasion. To date, the role of OsAGO2 in rice antiviral defence remains largely unknown. In this study, we determined that the expression of OsAGO2 in rice was induced upon rice black-streaked dwarf virus (RBSDV) infection. Using transgenic rice plants overexpressing OsAGO2 and Osago2 mutants generated through transposon-insertion or CRISPR/Cas9 technology, we found that overexpression of OsAGO2 enhanced rice susceptibility to RBSDV infection. Osago2 mutant lines exhibited strong resistance to RBSDV infection through the elicitation of an early defence response, including reprogramming defence gene expression and production of reactive oxygen species (ROS). Compared to Nipponbare control, the expression level of OsHXK1 (HEXOKINASE 1) increased significantly, and the methylation levels of its promoter decreased in the Osago2 mutant on RBSDV infection. The expression profile of OsHXK1 was the opposite to that of OsAGO2 during RBSDV infection. Overexpression of OsHXK1 in rice also induced ROS production and enhanced rice resistance to RBSDV infection. These results indicate that OsHXK1 controls ROS accumulation and is regulated by OsAGO2 through epigenetic regulation. It is noteworthy that the Osago2 mutant plants are also resistant to southern rice black-streaked dwarf virus infection, another member of the genus Fijivirus. Based on the results presented in this paper, we conclude that OsAGO2 modulates rice susceptibility to fijivirus infection by suppressing OsHXK1 expression, leading to the onset of ROS-mediated resistance. This discovery may benefit future rice breeding programmes for virus resistance.  相似文献   

7.
Genetics of yeast hexokinase   总被引:24,自引:3,他引:21       下载免费PDF全文
Lobo Z  Maitra PK 《Genetics》1977,86(4):727-744
Two independent isolates of Saccharomyces cerevisiae lacking hexokinase activity (EC 2.7.1.1) are described. Both mutant strains grow on glucose but are unable to grow on fructose, and contain two mutant genes hxk1 and hxk2 each. The mutations are recessive and noncomplementing. Genetic analysis suggests that these two unlinked genes hxk1 and hxk2 determine, independently of each other, the synthesis of hexokinase isozymes P1 and P2, respectively. hxk1 is located on chromosome VIR distal to met10, and hxk2 is on chromosome IIIR distal to MAL2. Of four hexokinase-positive spontaneous reversions, one is very tightly linked to hxk1 and the other three to the hxk2 locus. The reverted enzymes are considerably more thermolabile than the respective wild-type enzymes, and in one case show altered immunological properties. Data are presented which suggest that the hxk1 and hxk2 mutations are missense mutations in the structural genes of hexokinase P1 and hexokinase P2, respectively. These are presumably the only enzymes that allow S. cerevisiae to grow on fructose.  相似文献   

8.
Saccharomyces cerevisiae has two homologous hexokinases, I and II; they are 78% identical at the amino acid level. Either enzyme allows yeast cells to ferment fructose. Mutant strains without any hexokinase can still grow on glucose by using a third enzyme, glucokinase. Hexokinase II has been implicated in the control of catabolite repression in yeasts. We constructed null mutations in both hexokinase genes, HXK1 and HXK2, and studied their effect on the fermentation of fructose and on catabolite repression of three different genes in yeasts: SUC2, CYC1, and GAL10. The results indicate that hxk1 or hxk2 single null mutants can ferment fructose but that hxk1 hxk2 double mutants cannot. The hxk2 single mutant, as well as the double mutant, failed to show catabolite repression in all three systems, while the hxk1 null mutation had little or no effect on catabolite repression.  相似文献   

9.
Summary When strains of Saccharomyces cerevisiae carrying a single glucose-phosphorylating enzyme such as hexokinase P1 or hexokinase P2 or glucokinase, are subjected to the selection pressure against the toxic sugar 2-deoxyglucose, the majority of survivors are mutants lacking the respective enzymes. All the 2-deoxyglucose-resistant segregants recovered from backcrosses of these mutants to a wild type strain are glucose-negative and all the sensitive ones are glucose-positive. The hexokinase mutations are located in the same complementation groups as defined by the structural genes of hexokinase P1 and hexokinase P2. No interallelic complementation has been observed either in hexokinase P1 or in hexokinase P2 amongst a total of 4×64, and 5×60 different combinations of independent mutants at the hxk1 and hxk2 loci respectively. There appears to be neither a common genetic regulator controlling two or more of these glucose-phosphorylating enzymes nor a sugar carrier that can be dispensed with.  相似文献   

10.
11.
12.
Summary Mutants were investigated that had elevated hexokinase activity and had been isolated previously as resistant to carbon catabolite repression (Zimmermann and Scheel 1977). They were allele tested with mutant strains of Lobo and Maitra (1977), which had defects in one or more of the genes coding for glucokinase and unspecific hexokinases. It was shown, that the mutation abolishing carbon catabolite repression had occured in a gene that was not allelic to any of the structural genes coding for hexokinases. This indicated that a regulatory defect was responsible for elevated hexokinase activity. This agreed with observations that hexokinase activities were like wild-type during growth on non-fermentable carbon sources in hex2 mutants. Recombination between the mutant allele hex2 and mutant alleles hxk1 and hxk2, coding for hexokinase PI and PII respectively, clearly demonstrated that only hexokinase PII was elevated in hex2 mutants. When hex2 mutant cells grown on YEP ethanol were shifted to YEP glucose media, hexokinase activity increased after 30min. This increase depended on de novo protein synthesis. hex2 mutants provide evidence, that carbon catabolite repression and synthesis of hexokinase PII are under common regulatory control.  相似文献   

13.
Müller KJ  He X  Fischer R  Prüfer D 《Planta》2006,224(5):1023-1027
Seed plants with compound leaves constitute a polyphyletic group, but studies of diverse taxa show that genes of the class 1 KNOTTED-LIKE HOMEOBOX (KNOX1) family are often involved in compound leaf development. This suggests that knox1 genes have been recruited on multiple occasions during angiosperm evolution (Bharathan et al. in Science 296:1858–1860, 2002). In agreement with this, we demonstrate that the simple leaf of dandelion (Taraxacum officinale Web.) can be converted into a compound leaf by the constitutive expression of heterologous knox1 genes. Dandelion is a rosette plant of the family Asteraceae, characterised by simple leaves with deeply lobed margins and endogenous knox1 gene expression. Transgenic dandelion plants constitutively expressing the barley (Hordeum vulgare L.) hooded gene (bkn3, barley knox3) or the related bkn1 gene, developed compound leaves featuring epiphyllous rosettes. We discuss these results in the context of two current models of compound leaf formation.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
The voltage-dependent anion channel (VDAC) and mitochondrially located hexokinase have been implicated both in pathways leading to cell death on the one hand, and immortalization in tumor formation on the other. While both proteins have also been implicated in death processes in plants, their interaction has not been explored. We have examined cell death following heterologous expression of a rice VDAC in the tobacco cell line BY2 and in leaves of tobacco plants and show that it is ameliorated by co-expression of hexokinase. Hexokinase also abrogates death induced by H2O2. We conclude that the ratio of expression of the two proteins and their interaction play a major role in modulating death pathways in plants.  相似文献   

15.
Role of the Rice Hexokinases OsHXK5 and OsHXK6 as Glucose Sensors   总被引:1,自引:0,他引:1       下载免费PDF全文
The Arabidopsis (Arabidopsis thaliana) hexokinase 1 (AtHXK1) is recognized as an important glucose (Glc) sensor. However, the function of hexokinases as Glc sensors has not been clearly demonstrated in other plant species, including rice (Oryza sativa). To investigate the functions of rice hexokinase isoforms, we characterized OsHXK5 and OsHXK6, which are evolutionarily related to AtHXK1. Transient expression analyses using GFP fusion constructs revealed that OsHXK5 and OsHXK6 are associated with mitochondria. Interestingly, the OsHXK5ΔmTP-GFP and OsHXK6ΔmTP-GFP fusion proteins, which lack N-terminal mitochondrial targeting peptides, were present mainly in the nucleus with a small amount of the proteins seen in the cytosol. In addition, the OsHXK5NLS-GFP and OsHXK6NLS-GFP fusion proteins harboring nuclear localization signals were targeted predominantly in the nucleus, suggesting that these OsHXKs retain a dual-targeting ability to mitochondria and nuclei. In transient expression assays using promoter∷luciferase fusion constructs, these two OsHXKs and their catalytically inactive alleles dramatically enhanced the Glc-dependent repression of the maize (Zea mays) Rubisco small subunit (RbcS) and rice α-amylase genes in mesophyll protoplasts of maize and rice. Notably, the expression of OsHXK5, OsHXK6, or their mutant alleles complemented the Arabidopsis glucose insensitive2-1 mutant, thereby resulting in wild-type characteristics in seedling development, Glc-dependent gene expression, and plant growth. Furthermore, transgenic rice plants overexpressing OsHXK5 or OsHXK6 exhibited hypersensitive plant growth retardation and enhanced repression of the photosynthetic gene RbcS in response to Glc treatment. These results provide evidence that rice OsHXK5 and OsHXK6 can function as Glc sensors.In higher plants, sugars are known to function as signaling molecules in addition to being a fundamental source of fuel for carbon and energy metabolism. Indeed, sugars have been shown to regulate physiological processes during the entire plant life cycle, from germination to flowering and senescence, and to function during defense responses to biotic and abiotic stresses (Jang and Sheen, 1994; Jang et al., 1997; Perata et al., 1997; Smeekens and Rook, 1997; Smeekens, 1998; Wingler et al., 1998; Rolland et al., 2001, 2006; Leon and Sheen, 2003; Gibson, 2005; Biemelt and Sonnewald, 2006; Seo et al., 2007). Therefore, to sustain normal plant growth and development, rigorous sugar sensing and signaling systems are important for coordinating and modulating many essential metabolic pathways.Glc, one of the main products of photosynthesis, is the most widely recognized sugar molecule that regulates plant signaling pathways (Koch, 1996; Yu et al., 1996; Ho et al., 2001; Chen, 2007). Yeast (Saccharomyces cerevisiae) has several Glc sensors, including the hexokinase ScHXK2, Glc transporter-like proteins Sucrose nonfermenting 3 (Snf3) and Restores glucose transport 2 (Rgt2), and G protein-coupled receptor Gpr1. These sensors have been reported to sense the internal and external Glc status as part of mechanisms controlling cell growth and gene expression (Rolland et al., 2001; Lemaire et al., 2004; Santangelo, 2006). Similarly, recent studies in plants have unveiled sugar sensing and signaling systems mediated by hexokinase as a Glc sensor or G protein-coupled receptors in a hexokinase-independent way (Rolland et al., 2001, 2002, 2006; Chen et al., 2003; Moore et al., 2003; Holsbeeks et al., 2004; Cho et al., 2006b; Huang et al., 2006). In addition, plant Snf1-related protein kinase 1 (SnRK1), which is an ortholog of the yeast Snf1, plays important roles linking sugar signal, as well as stress and developmental signals, for the global regulation of plant metabolism, energy balance, growth, and survival (Baena-González et al., 2007; Lu et al., 2007; Baena-González and Sheen, 2008).In addition to the catalytic role of hexokinase in plants, which is to facilitate hexose phosphorylation to form hexose-6-P, the role of hexokinase as an evolutionarily conserved Glc sensor was first recognized from biochemical, genetic, and molecular studies of Arabidopsis (Arabidopsis thaliana) hexokinase 1 (AtHXK1) transgenic plants and glucose insensitive2 (gin2) mutants (Jang et al., 1997; Rolland et al., 2002; Harrington and Bush, 2003; Moore et al., 2003; Cho et al., 2006b). Transgenic plants expressing catalytically inactive AtHXK1 mutant alleles in the gin2 mutant background have provided compelling evidence that the catalytic and sensory functions of AtHXK1 are uncoupled in the Arabidopsis plant (Moore et al., 2003). Furthermore, proteomics and yeast two-hybrid interaction experiments have revealed that in the nucleus, AtHXK1 interacts with two partners, the vacuolar H+-ATPase B1 and the 19S regulatory particle of proteasome subunit, to directly control the expression of specific photosynthetic genes (Cho et al., 2006b; Chen, 2007). In these studies, the interactions between AtHXK1 and vacuolar H+-ATPase B1 or 19S regulatory particle of proteasome subunit appeared not to require the enzymatic activity of AtHXK1. In the tomato (Solanum lycopersicum) plant, AtHXK1 expression causes a reduction in photosynthesis, growth inhibition, and the induction of rapid senescence (Dai et al., 1999), which are all characteristics of sugar sensing and signaling in photosynthetic tissues. With the exception of Arabidopsis HXK1, the role of hexokinases as Glc sensors has yet to be demonstrated in other plant species (Halford et al., 1999; Veramendi et al., 2002; Rolland et al., 2006).Hexokinases have been shown to associate with various subcellular compartments, including mitochondria, chloroplasts, Golgi complexes, endoplasmic reticula, plasma membranes, and cytosols, suggesting numerous distinct intracellular functions (Schleucher et al., 1998; Wiese et al., 1999; Frommer et al., 2003; Olsson et al., 2003; Giese et al., 2005; Cho et al., 2006a; Kandel-Kfir et al., 2006; Rezende et al., 2006; Damari-Weissler et al., 2007). In yeast, the Glc sensor ScHXK2 has a nuclear localization signal (NLS) within its N-terminal domain and resides partly in the nucleus in addition to the cytosol (Herrero et al., 1998; Randez-Gil et al., 1998). Furthermore, the nuclear localization of ScHXK2 is required for Glc repression of several genes, such as SUC2, HXK1, and GLK1 (Herrero et al., 1998; Rodríguez et al., 2001). A portion of cellular AtHXK1, which is predominantly associated with mitochondria, was also found to reside in the nucleus (Yanagisawa et al., 2003; Cho et al., 2006b). Under conditions of Glc excess, it has thus been hypothesized that nuclear AtHXK1 binds its substrate Glc, resulting in the suppression of target gene expression (Cho et al., 2006b; Chen, 2007).We have previously isolated 10 rice (Oryza sativa) hexokinases, OsHXK1 through OsHXK10, and demonstrated that all of these subtypes possess hexokinase activity (Cho et al., 2006a). The results of this previous study showed that OsHXK4 and OsHXK7 reside in the chloroplast stroma and cytosol, respectively. Based on sequence similarity and subcellular localization, we have identified two rice hexokinases homologous to AtHXK1, OsHXK5 and OsHXK6. The subcellular localization of OsHXK5 and OsHXK6, observed with GFP fusion constructs, suggested that OsHXK5 and OsHXK6 retain a dual-targeting ability to mitochondria and nuclei. This finding prompted us to examine whether these homologues play a role in Glc sensing and signaling in rice. To address this question, we observed the function of OsHXK5 and OsHXK6 in mesophyll protoplasts of maize (Zea mays) and rice and in transgenic rice plants. In addition, we transformed the Arabidopsis gin2-1 mutant with either wild-type or catalytically inactive alleles of OsHXK5 and OsHXK6 and analyzed their sugar sensing and signaling characteristics. Finally, the conserved role of hexokinase as a Glc sensor in Arabidopsis and rice plants is discussed.  相似文献   

16.
Phosphorus, an essential plant nutrient, may become toxic when accumulated by plants to high concentrations. Certain plant species such as Verticordia plumosa L. suffer from P toxicity at solution concentrations far lower than most other plant species. In this study, exposure of V. plumosa plants to a solution containing as low as 3 mg l–1 P resulted in significant growth inhibition and typical symptoms of P toxicity. In a wide range of P levels studied, micronutrient concentrations in V. plumosa leaves were within the range considered adequate for optimal growth. Notably, tomato plants with high hexokinase activity due to overexpression of Arabidopsis hexokinase (AtHXK1) exhibited senescence symptoms similar to those of P toxic V. plumosa. The resemblance in senescence symptoms between P-toxic tomato plants and those with high hexokinase activity suggested that increased sugar metabolism could play a role in P toxicity in plants. To test this hypothesis, we determined the amount of hexose phosphate, the product of hexokinase, in V. plumosa leaves grown at various P levels in the nutrient solution. Positive correlations were found between concentration in the medium, P concentration in the plant, hexose phosphate concentration in leaves and P toxicity symptoms. Foliar Zn application suppressed P toxicity symptoms and reduced the level of hexose phosphate in leaves. Furthermore, Zn also inhibited hexokinase activity in vitro. Based on these results we suggest that P toxicity involves sugar metabolism via increased activity of hexokinase that accelerates senescence  相似文献   

17.
Previous investigations in our laboratory have shown that leaf developmental programming in tobacco is regulated by source strength. One hypothesis to explain how source strength is perceived is that hexokinase acts as a sensor of carbohydrate flux to regulate the expression of photosynthetic genes, possibly as a result of sucrose cycling through acid invertase and hexokinase. We have turned to Arabidopsis as a model system to study leaf development and have examined various photosynthetic parameters during the ontogeny of a single leaf on the Arabidopsis rosette grown in continuous light. We found that photosynthetic rates, photosynthetic gene expression, pigment contents and total protein amounts attain peak levels early in the expansion phase of development, then decline progressively as development proceeds. In contrast, the flux of 14CO2 into hexoses increases modestly until full expansion is attained, then falls in the fully expanded leaf. Partitioning of carbon into hexoses versus sucrose increases until full expansion is attained, then falls. The in vitro activities of hexokinase, vacuolar acid invertase, and cell wall acid invertase do not change until the late stages of senescence, when they increase markedly. At this time there are also dramatic increases in hexose pool sizes and in senescence-associated gene (SAG) expression. Taken together, our results suggest that invertase and hexokinase activities do not control the partitioning of label into hexoses during development. We conclude that our data are not readily compatible with a simple model of leaf development, whereby alterations in photosynthetic rates are mediated directly by hexose flux or by hexose pool sizes. Yet, these factors might contribute to the control of gene expression. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Sugars, the main growth substrates of plants, act as physiological signals in the complex regulatory network of sugar metabolism. To investigate the function of different glycolytic steps in sugar sensing and signaling we compared the effects of carbon starvation with those of glucose, glycerol and dihydroxyacetone on carbon metabolism, proteolysis, and protease expression in excised maize (Zea mays L.) root tips. Respiration, soluble proteins, protein turnover and proteolytic activities were monitored as a function of time, along with in vitro and in vivo analysis of a variety of metabolites (sugars, amino and organic acids, phosphoesters, adenine nucleotides...) using 13C, 31P and 1H NMR spectroscopy. Our results indicate that, in maize root tips, endopeptidase activities and protease expression are induced in response to a decrease in carbon supply to the upper part of the glycolytic pathway, i.e. at the hexokinase step. Proteolysis would be controlled downstream glycolysis, probably at the level of the respiratory substrate supply to mitochondria. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
该研究利用ISSR分子标记,对分布于福建省内5个样地( 邵武、建阳、建瓯、周宁和屏南)的61个野钩锥(Castanopsis tibetana)单株的遗传多样性进行了分析,并采用聚类分析方法探讨了它们的遗传关系。结果表明: 用10条ISSR引物从61个单株的基因组DNA共扩增出158条带,包含145条多态性条带,多态性条带百分率达91.77%,其中引物 UBC817、UBC819与UBC842的多态性条带百分率(PPB)为100.0%。各居群的多态性条带百分率(PPB)、有效等位基因数(Ne)、Nei’s基因多样度(H)和Shannon’s多样性指数(I)等各遗传指数差异较大,其中各项遗传指标中最高的为邵武居群,而周宁居群则最低。5个居群的基因分化系数和基因流分别为0.144 0和2.973 0,说明5个居群总遗传变异的14.40%存在于居群间,85.60%存在于居群内。种间总基因多样度分别为0.395 8,种内基因多样度分别为0.338 8,表明钩锥种间遗传多样性较高,且种间变异大于种内变异。各居群间的遗传距离差异较大; 其中,邵武与建瓯居群的遗传距离最近,仅为0.081 5; 建阳和周宁居群的遗传距离最远,为0.162 9。通过聚类分析可将5个钩锥居群聚为3支,屏南与周宁的居群各自独立聚为2支;来自邵武、建瓯及建阳的居群聚为一支,且可进一步分为两个亚支,建阳居群为1个亚支,邵武和建瓯居群聚为1个亚支。供试的钩锥具有较高的遗传多样性,存在着较为频繁的基因交流。该研究结果较准确地揭示了钩锥种间的遗传多样性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号