首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparin has a wide range of important biological activities including inhibition of pulmonary artery smooth muscle cell proliferation. To determine the minimum size of the heparin glycosaminoglycan chain essential for antiproliferative activity, porcine intestinal mucosal heparin was partially depolymerized with heparinase and fractionated to give oligosaccharides of different sizes. The structure of these oligosaccharides was fully characterized by 1D and 2D 1H NMR spectroscopy. These oligosaccharides were assayed for antiproliferative effects on cultured bovine pulmonary artery smooth muscle cells (PASMCs). The tetrasaccharide (4-mer) exhibited no heparin-like activity. Decasaccharides (10-mers) and dodecasaccharides (12-mers) displayed a reduced level of activity when compared to full-length heparin. Little effect on activity was observed in deca- and dodecasaccharides with one less 2-O-sulfo group. The 14-, 16-, and 18-mers showed comparable growth-inhibition effects on PAMSC as porcine intestinal mucosal heparin. These data suggest that a 14-mer is the minimum size of oligosaccharide that is essential for full heparin-like antiproliferative activity. Since the 14- to 18-mers have no 3-O-sulfo groups in their glucosamine residues, their full activity confirms that these 3-O-sulfonated glucosamine residues, which are required for heparin's anticoagulant activity, are not an essential requirement for antiproliferative activity.  相似文献   

2.
The binding, internalization, and metabolism of [3H]-heparin by human umbilical vein endothelial cells (HUVEC) and human umbilical arterial smooth muscle cells (HUASMC) have been characterized using size-exclusion HPLC. Incubation of HUVEC with [3H]-heparin demonstrated selective binding of high-molecular-weight (MW) components (MW = 21 kd), which was followed by rapid, temperature-dependent internalization. Over the next 3 hours, this internalized [3H]-heparin was degraded to low-MW fragments (MW = 0.9 kd). Primary cultures of HUASMC selectively bound extremely high-MW components (MW = 40 kd) and also smaller components whose MW (0.9 kd) corresponded to that of the heparin metabolite(s) formed by HUVEC. Subcultured HUASMC bound only the 40-kd components. Internalization of heparin by smooth muscle cells (SMC) was significantly slower than that determined for HUVEC, and even after 4 hours there was no evidence of the heparin being metabolized. However, when incubating primary rabbit aortic SMC with purified low-MW heparin fragment(s) produced in culture by HUVEC, a significantly lower proliferative response of these cells (IC50 = 18.4 micrograms/ml) was obtained. Virtually no effect was observed with subcultured SMC in the range of the tested concentrations (0-20 micrograms/ml). These fragments were 10- to 15-fold more effective in inhibiting primary SMC growth than was standard heparin. Furthermore, heparin fractions in the same range of molecular weights, purified either after nitrous acid or heparinase depolymerization of standard heparin, showed no activity on primary SMC growth, thus indicating a high degree of selectivity of the heparin metabolite(s) produced by HUVEC in culture.  相似文献   

3.
Endothelial nitric oxide synthase (eNOS) is responsible for the production of nitric oxide (NO) in blood vessels. NO has been shown to be involved in the inhibition of vascular smooth muscle cell (VSMC) proliferation. In the present study, the eNOS gene was transferred into rat aortic smooth muscle cells by using an adenoviral vector, and the effect of endogenously produced NO on VSMC proliferation was investigated. The presence of eNOS in eNOS-transfected cells was confirmed by immunocytochemistry and Western blot analysis. eNOS transfection resulted in inhibition of VSMC proliferation. This effect was accompanied by increased levels of p53 and p21. This effect was abrogated in the presence of the protein kinase A (PKA) inhibitor Rp-8-bromoadenosine 3',5'-cyclic monophosphothioate. The increased levels of p53 and p21 observed in eNOS-transfected cells were reduced in the presence of the PKA inhibitor. These data suggest that p21 and p53 play a role in the inhibition of proliferation in eNOS-transfected cells and that levels of these two proteins are regulated by PKA.  相似文献   

4.
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers involved in the intracellular signal transduction of a wide variety of extracellular stimuli. These signals regulate many biological processes including cell proliferation, differentiation, migration, and apoptosis. Recently, significant progress has been achieved in the molecular basis underlying cyclic nucleotide regulation of cell proliferation. This review summarizes our knowledge of the signaling pathways regulated by cyclic nucleotides in arterial smooth muscle cells.  相似文献   

5.
目的:观察吲哚昔酚(ldoxifene,ldo)对大鼠血管平滑肌细胞增殖的影响,并探讨平滑肌源性一氧化氮(NO)在其中的作用。方法:血管平滑肌细胞培养、NO释放的测定、细胞计数和MTT测定。结果:吲哚昔酚可剂量依赖性的促使血管平滑肌细胞NO的释放,10μmol/L吲哚昔酚明显抑制10%胎牛血清(FCS)和10^-7mol/L的ET-1诱导的细胞增殖,吲哚昔酚的抑制作用可被一氧化氮合酶抑制剂L-NAME(100μmol/L)和鸟苷酸环化酶(guanylate cyclase,GC)抑制剂美蓝(methylene blue,MB)(10μmol/L)明显减轻。结论:吲哚昔酚抑制血管平滑肌细胞增殖的作用与其NO释放密切相关,其中可能有NO-GC-cGMP通路的参与。  相似文献   

6.
We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated. Relative to the matrix proteins studied, the effects are unique to perlecan, because plating of SMCs on several other basement membrane proteins is associated with low levels of FRNK and corresponding high levels of FAK and ERK1/2 phosphorylation and SMC growth. Perlecan supports SMC adhesion, although there is reduced cell spreading compared with fibronectin (FN), laminin (LN), or collagen type IV (IV). Despite the reduction in cell spreading, we report that perlecan-induced up-regulation of FRNK is independent of cell shape changes. Growth inhibition by perlecan was rescued by overexpressing a constitutively active FAK construct, but overexpressing kinase-inactivated mutant FAK or FRNK attenuated fibronectin-stimulated growth. These data indicate that perlecan functions as an endogenously produced inhibitor of SMC growth at least in part through the active regulation of FRNK expression. FRNK, in turn, may control SMC growth by downregulating FAK-dependent signaling events.  相似文献   

7.
Nitric oxide (NO) acts as a vasoregulatory molecule that inhibits vascular smooth muscle cell (SMC) proliferation. Studies have illustrated that NO inhibits SMC proliferation via the extracellular signal-regulated kinase (ERK) pathway, leading to increased protein levels of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. The ERK pathway can be pro- or antiproliferative, and it has been demonstrated that the activation status of the small GTPase RhoA determines the proliferative fate of ERK signaling, whereby inactivation of RhoA influences ERK signaling to increase p21Waf1/Cip1 and inhibit proliferation. The purpose of these investigations was to examine the effect of NO on RhoA activation/S-nitrosation and to test the hypothesis that inhibition of SMC proliferation by NO is dependent on inactivation of RhoA. NO decreases activation of RhoA, as demonstrated by RhoA GTP-binding assays, affinity precipitation, and phalloidin staining of the actin cytoskeleton. Additionally, these effects are independent of cGMP. NO decreases SMC proliferation, and gene transfer of constitutively active RhoA (RhoA63L) diminished the antiproliferative effects of NO, as determined by thymidine incorporation. Western blots of p21Waf1/Cip1 correlated with changes in proliferation. S-nitrosation of recombinant RhoA protein and immunoprecipitated RhoA was demonstrated by Western blotting for nitrosocysteine and by measurement of NO release. Furthermore, NO decreases GTP loading of recombinant RhoA protein. These findings indicate that inactivation of RhoA plays a role in NO-mediated SMC antiproliferation and that S-nitrosation is associated with decreased GTP binding of RhoA. Nitrosation of RhoA and other proteins likely contributes to cGMP-independent effects of NO. cell signaling; posttranslational modification; vascular disease  相似文献   

8.
We examined the influence of prostaglandins on the initiation of proliferation of growth-arrested human adult aortic and fetal smooth muscle cells. Prostaglandins of the E series (25 nM) exerted a significant (p less than or equal to 0.05) inhibitory effect on DNA synthesis. Inhibition was observed when PGE1 was added in the G1 phase of the cell cycle. PGE1 had no effect when added once DNA synthesis had started. Thus prostaglandins of the E series may inhibit the responsiveness of smooth muscle cells to the mitogenic action of critical growth factors, such as PGDF. This inhibitory response is cell-cycle dependent. Once smooth muscle cells have entered S phase, PGE1 is no longer effective. Our data also suggest that cAMP is involved in the PGE1-induced growth inhibition, since concomitant with PGE1 addition, cAMP levels rose rapidly; addition of the cAMP analogue db-cAMP resulted in a cell-cycle-dependent inhibition pattern comparable to that observed with PGE1.  相似文献   

9.
The current study compared the effectiveness of the various human apolipoprotein E (apoE) isoforms in inhibiting platelet-derived growth factor- (PDGF-) stimulated smooth muscle cell proliferation and migration. The incubation of primary mouse aortic smooth muscle cells with apoE3 resulted in dose-dependent inhibition of smooth muscle cells stimulated by 10 ng/mL PDGF. Greater than 50% inhibition of smooth muscle cell proliferation was observed at 15 microg/mL of human apoE3. Human apoE2 was less effective, requiring a higher concentration to achieve inhibition comparable to that of apoE3. Human apoE4 was the least effective of the apoE isoforms with no significant inhibition of cell proliferation observed at concentrations up to 15 microg/mL. Interestingly, apoE inhibition of PDGF-directed smooth muscle cell migration did not show preference for any apoE isoforms. Human apoE2, apoE3, and apoE4 were equally effective in inhibiting smooth muscle cell migration toward PDGF. These results are consistent with previous data showing that apoE inhibition of smooth muscle cell proliferation is mediated through its binding to heparan sulfate proteoglycans, whereas its inhibition of cell migration is mediated via binding to the low-density lipoprotein receptor related protein. The low efficiency of apoE4 to inhibit smooth muscle cell proliferation also suggested another mechanism to explain the association between the apolipoprotein epsilon4 allele with increased risk of coronary artery disease.  相似文献   

10.
We examined the influence of glucocorticoid hormones on the proliferation of cultured adult bovine aortic smooth muscle cells (BASM) using both primary mass cultures and a cloned strain. Cloned BASM cells maintained on plastic culture dishes were inhibited by approximately 40% by dexamethasone treatment but showed no inhibition when grown of homologous extracellular matrix (ECM) coated dishes. Dexamethasone inhibited growth of primary cultures by 73% on plastic and by 45% on ECM. The inhibitory effect was specific for the glucocorticoids, dexamethasone, corticosterone, and cortisol and was not observed with progesterone, aldosterone, estradiol or 17-alpha OH progesterone. In cloned cells, the abolition of glucocorticoid inhibition by ECM was independent of seeding density and serum concentration. The inhibition on plastic was dependent on serum concentrations greater than 1% and resulted in both a slow rate of proliferation and a lower saturation density. A specific subset of peptides detected on two-dimensional gels was induced by glucocorticoids under growth inhibitory conditions but was not induced when the cells were grown on ECM. Primary cultures grown on ECM and exposed to Dulbecco's modified Eagle's Medium (DME) containing high density lipoprotein and transferrin grew at 40% of the rate observed for cultures exposed to DME with 10% serum. Both conditions showed growth inhibition of 70% in the presence of dexamethasone. The addition of epidermal and platelet-derived growth factors in DME containing high density lipoprotein and transferrin to cells grown on ECM resulted in growth rates comparable to that observed with cultures exposed to 10% serum and were inhibited 45% by dexamethasone. These results suggest that glucocorticoids inhibit smooth muscle proliferation by decreasing the sensitivity of the cells to mitogenic stimulation by high density lipoprotein when the cells are maintained on a homologous substrate.  相似文献   

11.
YC-1, a synthetic benzyl indazole derivative, is capable of stimulating endogenous vessel wall cyclic guanosine monophosphate (cGMP) production and attenuating the remodeling response to experimental arterial angioplasty. In an effort to investigate the mechanisms of this YC-1-mediated vasoprotection, we examined the influence of soluble YC-1 or YC-1 incorporated in a polyethylene glycol (PEG) hydrogel on cultured rat vascular smooth muscle cell (SMC) cGMP synthesis, SMC proliferation, and platelet function. Results demonstrate that soluble YC-1 stimulated SMC cGMP production in a dose-dependent fashion, while both soluble and hydrogel-released YC-1 inhibited vascular SMC proliferation in a dose-dependent fashion without effects on cell viability. Platelet aggregation and adherence to collagen were both significantly inhibited in a dose-dependent fashion by soluble and hydrogel-released YC-1. Arterial neointima formation following experimental balloon injury was significantly attenuated by perivascular hydrogel-released YC-1. These results suggest that YC-1 is a potent, physiologically active agent with major anti-proliferative and anti-platelet properties that may provide protection against vascular injury through cGMP-dependent mechanisms.  相似文献   

12.
Several nitric oxide (NO) effects in the cardiovascular system are mediated by soluble guanylate cyclase (sGC) activation but potassium channels (KC) are also emerging as important effectors of NO actions. We investigated the relationship among vascular smooth muscle cell proliferation, NO, cyclic GMP, and KC using the A7r5 smooth muscle cell line derived from rat aorta. NO donors (two nitrosothiols, S-nitroso-acetyl-d,l-penicillamine, SNAP, and S-nitroso-glutathione, GSNO, and an organic nitrate, glyceryl trinitrate, GTN; 1-1000 microM) dose-dependently inhibited cell proliferation. ODQ (a selective inhibitor of sGC; 0.1 and 1 microM) and KT5823 (a selective inhibitor of cGMP-dependent protein kinase, 1 microM) prevented NO effects, confirming that sGC is a key target. In this report, we show that tetraethylammonium (TEA, a non-selective blocker of KC, 300 microM), and 4-aminopyridine (a selective blocker of voltage-dependent KC, 100 microM) prevented SNAP inhibitory effects on cell proliferation, whereas glibenclamide (a selective blocker of ATP-dependent KC, 1 microM) was ineffective. Iberiotoxin (a selective blocker of high conductance calcium-activated KC, 100 nM), as well charybdotoxin (a blocker of high and intermediate conductance calcium-activated KC, 100 nM) and apamine (a selective blocker of small conductance calcium-activated KC, 100 nM), blocked the antiproliferative effect induced by SNAP. NS1619 (an opener of high conductance calcium-activated KC, 1-100 microM), inhibited cell proliferation. In addition, sub-effective concentrations of ODQ (100 nM) and TEA (10 microM) synergized in blocking SNAP antiproliferative effects. Thus, voltage-dependent and calcium-activated but not ATP-dependent KC appear to have a prominent role, besides sGC activation, in NO-induced inhibition of vascular smooth muscle cell proliferation.  相似文献   

13.
Ouabain-induced signaling and vascular smooth muscle cell proliferation   总被引:11,自引:0,他引:11  
The hypothesis of this study is that the sodium pump complex acts as an intracellular signal-transducing molecule in canine vascular smooth muscle cells through its interaction with other membrane and cytoskeletal proteins. We have demonstrated that 1 nm ouabain induced transactivation of the epidermal growth factor receptor (EGFR), resulting in increased proliferation and bromodeoxyuridine (BrdUrd) uptake. Immunoprecipitation and Western blotting showed that the EGFR and Src were phosphorylated within 5 min of 10(-9) m ouabain stimulation. Both ouabain-induced DNA synthesis (BrdUrd uptake) and MAPK42/44 phosphorylation were inhibited by the Src inhibitor PP2, the EGFR kinase inhibitor AG1478, the tyrosine kinase inhibitor genistein, and the MEK1 inhibitor PD98059. Ouabain concentrations higher than 1 nm had little or no stimulating effect on proliferation or BrdUrd uptake but did minimally activate ERK1/2. Thus, low concentrations of ouabain, which do not inhibit the sodium pump sufficiently to perturb the resting cellular ionic milieu, initiate a transactivational signaling cascade leading to vascular smooth muscle cell proliferation.  相似文献   

14.
Lactosylceramide stimulates aortic smooth muscle cell proliferation.   总被引:3,自引:0,他引:3  
We have investigated the effects of various sphingolipids on aortic smooth muscle cell proliferation employing viable cell counting, [3H] thymidine incorporation into DNA and the release of lactate dehydrogenase. Assays for UDP Gal: GlcCer Bl-4 galactosyltransferase (GalT-2) in control and treated cells were pursued simultaneously. Lactosylceramide stimulated cell proliferation in the order of 5 fold. Antibody against LacCer but not GbOse3Cer blocked the proliferative effects of LacCer in these cells. This phenomena was specific for aortic smooth muscle cells as LacCer decreased cell viability of aortic endothelial cells and had no effect on pulmonary endothelial cells. D-PDMP inhibited the activity of GalT-2 in smooth muscle cells and markedly prevented cell proliferation. In contrast, L-PDMP stimulated the activity of GalT-2 in smooth muscle cells and stimulated cell proliferation. Antibody against GalT-2 inhibited cell proliferation. Our findings suggest that the activation of GalT-2 leads to increased LacCer levels, which in turn, may be involved in aortic smooth muscle cell proliferation.  相似文献   

15.
1,25 dihydroxyvitamin D3 (1,25 (OH)2 D) and its less hypercalcemic analogues have been shown to inhibit the proliferation of vascular smooth muscle cells (VSMC) in culture. However, the mechanism(s) underlying this suppression is not well understood. Here we have shown that 1,25 (OH)2 D and its analogues (RO-25-6760 and RO-23-7553) inhibit endothelin (ET)-dependent DNA synthesis and cell proliferation in neonatal rat aortic VSMC. While ET stimulation of mitogenic activity requires activation of the MEK/ERK signal transduction cascade, 1,25 (OH)2 D neither affected the ET-dependent activation of ERK nor synergized with the MEK inhibitor PD98059 in reducing DNA synthesis in these cultures, implying that the locus of 1,25 (OH)2 D actions lies between ERK and the cell cycle machinery. 1,25 (OH)2 D suppressed ET-induced activation of cyclin-dependent kinase 2 (Cdk2), a key cell cycle kinase, but had no effect on the expression of this protein. Collectively, the data identify Cdk2 as the target of 1,25 (OH)2 D in the cell cycle machinery and imply a potential role for 1,25 (OH)2 D, or its less hypercalcemic analogues, in the treatment of disorders of VSMC proliferation involving the vascular wall.  相似文献   

16.
17.
Control of smooth muscle cell proliferation in vascular disease   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Smooth muscle cell proliferation has previously been regarded as a central feature in vascular disease. The role of this process has recently been substantially re-evaluated, and we have reconsidered the functional importance of smooth muscle cell proliferation, the origin of proliferating smooth muscle cells in lesions, and the mechanisms whereby smooth muscle cell proliferation is controlled. In this review, we summarize recent progress in the understanding of smooth muscle cell proliferation, with a particular focus on how interactions between the extracellular matrix, smooth muscle cells, and mitogens control critical steps in this process. RECENT FINDINGS: Irrespective of the origin of smooth muscle cells in vascular lesions, fundamental interactions between the extracellular matrix and cell surface integrins are necessary in order to initiate a proliferative response in a quiescent smooth muscle cell, in a similar manner to any non-malignant cell. These interactions trigger intracellular signaling and cell cycle entry, which facilitate cell cycle progression and proliferation by mitogens. In addition, extracellular matrix interactions may also control the availability and activity of growth factors such as heparin-binding mitogens, which can be sequestered by heparan sulfate containing extracellular matrix components and regulate smooth muscle cell proliferation. SUMMARY: New insights into mechanisms whereby the extracellular matrix takes part in the control of smooth muscle cell proliferation suggest a number of putative targets for future therapies that can be applied to increase plaque stability, prevent the clinical consequences of atherosclerosis and improve outcomes after interventional procedures and organ transplantation.  相似文献   

18.
A small catalytic DNA molecule targeting c-myc RNA was found to be a potent inhibitor of smooth muscle cell (SMC) proliferation. The catalytic domain of this molecule was based on that previously derived by in vitro selection (Santoro, S. W., and Joyce, G. F. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 4262-4266) and is known as the "10-23" general purpose RNA-cleaving deoxyribozyme. In addition to inhibiting SMC proliferation at low concentration, this molecule (targeting the translation initiation region of c-myc RNA) was found to efficiently cleave its full-length substrate in vitro and down-regulate c-myc gene expression in smooth muscle cells. The serum nuclease stability of this molecule was enhanced without substantial loss of kinetic efficiency by inclusion of a 3'-3'-internucleotide inversion at the 3'-terminal. The extent of SMC suppression was found to be influenced by the length of the substrate binding arms. This correlated to some extent with catalytic activity in both the short substrate under multiple turnover conditions and the full-length substrate under single turnover conditions, with the 9 + 9 base arm molecule producing the greatest activity.  相似文献   

19.
Many natural products have been so far tested regarding their potency to inhibit vascular smooth muscle cell proliferation, a process involved in atherosclerosis, pulmonary hypertension and restenosis. Compounds studied in vitro and in vivo as VSMC proliferation inhibitors include, for example indirubin-3′-monoxime, resveratrol, hyperoside, plumericin, pelargonidin, zerumbone and apamin. Moreover, taxol and rapamycin, the most prominent compounds applied in drug-eluting stents to counteract restenosis, are natural products. Numerous studies show that natural products have proven to yield effective inhibitors of vascular smooth muscle cell proliferation and ongoing research effort might result in the discovery of further clinically relevant compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号