首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
叶绿体是绿色植物特有的细胞器,其基因组信息被广泛应用于植物系统发育和比较基因组学研究。目前,越来越多的物种有了叶绿体全基因组序列,人们对叶绿体基因组的结构及其变异规律有了更深入的了解。该文对近年来国内外有关被子植物叶绿体基因组插入/缺失、短片段倒位与重复、基因组结构重排以及基因丢失等结构变异式样的研究进展进行综述,并分析了叶绿体基因组结构研究中仍存在的问题以及该领域未来的发展趋势。  相似文献   

2.
Ancient genomes anchor genealogies in directly observed historical genetic variation and contextualize ancestral lineages with archaeological insights into their geography and cultural associations. However, the majority of ancient genomes are of lower coverage and cannot be directly built into genealogies. Here, we present a fast and scalable method, Colate, the first approach for inferring ancestral relationships through time between low-coverage genomes without requiring phasing or imputation. Our approach leverages sharing patterns of mutations dated using a genealogy to infer coalescence rates. For deeply sequenced ancient genomes, we additionally introduce an extension of the Relate algorithm for joint inference of genealogies incorporating such genomes. Application to 278 present-day and 430 ancient DNA samples of >0.5x mean coverage allows us to identify dynamic population structure and directional gene flow between early farmer and European hunter-gatherer groups. We further show that the previously reported, but still unexplained, increase in the TCC/TTC mutation rate, which is strongest in West Eurasia today, was already present at similar strength and widespread in the Late Glacial Period ~10k−15k years ago, but is not observed in samples >30k years old. It is strongest in Neolithic farmers, and highly correlated with recent coalescence rates between other genomes and a 10,000-year-old Anatolian hunter-gatherer. This suggests gene-flow among ancient peoples postdating the last glacial maximum as widespread and localizes the driver of this mutational signal in both time and geography in that region. Our approach should be widely applicable in future for addressing other evolutionary questions, and in other species.  相似文献   

3.
4.
5.
6.
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.  相似文献   

7.
8.
9.
Genomics today involves the study of many genes at a time in order to gain an integrated picture of the cell or organism as a whole. This review considers the architecture and evolution of bacterial genomes. The many facets of large-scale functional investigation in a variety of bacteria and the search to find common rules in their dynamic and structural organization are discussed. Such rules could aid the understanding of common properties and essential differences corresponding to elusive functions, or of still unknown bacterial biotopes.  相似文献   

10.
插入突变在功能基因组学研究中的应用   总被引:2,自引:0,他引:2  
插入突变库的构建是功能基因组学研究的一个重要内容,可为确定基因的功能提供最直接的证据。构建插入突变库的方法有T-DNA插入突变、转座子插入突变和质粒介导的插入突变。本文分别介绍三种方法的原理及其在功能基因组学研究中的应用和研究进展。  相似文献   

11.
12.
以玉米叶绿体基因组为参照序列,采用三序列比较法系统分析了小麦和水稻分化过程中叶绿体基因组核苷酸替代的发生方式.结果表明,小麦中存在(A+T)/(G+C)替代偏差,水稻则无,该差异对小麦和水稻分化后叶绿体基因组G+C含量产生不同的影响,替代使小麦叶绿体基因组G+C含量降低、水稻叶绿体基因组G+C含量表现增加.无论在编码区、非编码区,还是不同功能基因区,小麦叶绿体基因组转换与颠换的比值都显著低于水稻.小麦和水稻叶绿体基因组进化中核苷酸替代呈现种属特异性.  相似文献   

13.
14.
新一代测序技术(Next-generation sequencing,NGS)在阐明复杂和高度重复的基因组结构,DNA序列与基因组结构变异同重要农艺性状之间的关系等方面具有重要作用。从NGS系统的开发与作物基因组测序,NGS与转录组分析,NGS与全基因组关联图谱,及SNPs开发与预测育种等方面,综述了NGS技术在作物基因组研究中的应用,可为作物基因组研究提供理论基础。  相似文献   

15.
刘静  杜建厂 《遗传》2013,35(9):1117-1124
LTR-反转座子是植物基因组的主要组成部分。它们在结构上非常保守, 通常含有gag和pol两个基因, 是完成其转座过程所必需的。在前期研究中, 本项目组对大豆基因组SARE转座子家族进行了详细的分析。结果表明, 该家族的拷贝中还存在第3个基因——Orf1。文章借助生物信息学的研究方法, 对33个已测序的基因组进行了全基因组注释。结果发现, 在7个植物基因组(桉树、杨树、棉花、大豆、百脉根、亚麻和苜蓿)中, 部分LTR-反转座子元件在gag基因的上游存在约1~2 kb未知的Orf1基因或基因片段。这类转座子多数在0~3百万年内插入到其所在的寄主基因组中, 但它们在不同物种中的分子结构、发生的频率、扩增的强度和活跃的时期等方面差异较大。系统进化树分析表明, 这类具有特殊结构的转座子较整齐的聚类到双子叶植物的一个进化分支上, 表明它们可能是部分双子叶植物在进化过程中所产生的。不同物种间的相对保守性、大量拷贝的转录活性以及可能存在的多个功能结构域, 提示Orf1基因可能具有一定的生物学功能。  相似文献   

16.
The cryptomonads are an enigmatic group of unicellular eukaryotic algae that possess two nuclear genomes, having acquired photosynthesis by the uptake and retention of a eukaryotic algal endosymbiont. The endosymbiont nuclear genome, or nucleomorph, of the cryptomonad Guillardia theta has been completely sequenced: at only 551 kilobases (kb) and with a gene density of ∼1 gene/kb, it is a model of compaction. In contrast, very little is known about the structure and composition of the cryptomonad host nuclear genome. Here we present the results of two small-scale sequencing surveys of fosmid clone libraries from two distantly related cryptomonads, Rhodomonas salina CCMP1319 and Cryptomonas paramecium CCAP977/2A, corresponding to ∼150 and ∼235 kb of sequence, respectively. Very few of the random end sequences determined in this study show similarity to known genes in other eukaryotes, underscoring the considerable evolutionary distance between the cryptomonads and other eukaryotes whose nuclear genomes have been completely sequenced. Using a combination of fosmid clone end-sequencing, Southern hybridizations, and PCR, we demonstrate that Ty3-gypsy long-terminal repeat (LTR) retrotransposons and tandem repeat sequences are a prominent feature of the nuclear genomes of both organisms. The complete sequence of a 30.9-kb genomic fragment from R. salina was found to contain a full-length Ty3-gypsy element with near-identical LTRs and a chromodomain, a protein module suggested to mediate the site-specific integration of the retrotransposon. The discovery of chromodomain-containing retroelements in cryptomonads further expands the known distribution of the so-called chromoviruses across the tree of eukaryotes. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

17.
18.
19.
Yang J  Xie Z  Glover BJ 《The New phytologist》2005,165(2):623-632
NF-Y is a ubiquitous CCAAT-binding factor composed of NF-YA, NF-YB and NF-YC. Multiple genes encoding NF-Y subunits have been identified in plant genomes. It remains unclear whether the duplicate genes underwent different evolutionary patterns. Likelihood-ratio tests were used to examine whether the amino acid substitution rates are the same between duplicate genes. The influences of selection on evolution were evaluated by comparing the conservative and radical amino acid substitution rates, as well as maximum-likelihood analysis. Some NF-YB and NF-YC duplicates showed significant evidence of asymmetric evolution but not the NF-YA duplicates. Most amino acid replacements in the NF-YB and NF-YC duplicates result in changes in hydropathy, polar requirement and polarity. The physicochemical changes in the sequences of NF-YB seem to be coupled to asymmetric divergence in gene function. Plant NF-Y genes have evolved in different patterns. Relaxed selective constraints following gene duplication are most likely responsible for the unequal evolutionary rates and distinct divergence patterns of duplicate NF-Y genes. Positive selection may have promoted amino acid hydropathy changes in the NF-YC duplicates.  相似文献   

20.
A complete understanding of the biology of an organism necessarily starts with knowledge of its genetic makeup. Proteins encoded in a genome must be identified and characterized, and the presence or absence of specific sets of proteins must be noted in order to determine the possible biochemical pathways or functional systems utilized by that organism. The COG database presents a set of tools suited to these purposes, including the ability to select protein families (COGs) that contain proteins from a specified set of species. The selection is based upon a phylogenetic pattern, which is a shorthand representation of the presence or absence of a particular species in a COG. Here we present the use of phylogenetic patterns as a means to perform targeted searches for undetected protein-coding genes in complete genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号