首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro experiments revealed no incorporation of amino acids into actin-like protein of isolated rat liver mitochondria. The method of pulse label showed the presence of [14C]actin-like protein in mitochondria of intact animals which were not administered cycloheximide. A new synthesized actin-like protein is identified in mitochondria as a labelled polypeptide with apparent molecular weight 42 kDa. The data obtained may evidence for cytoplasmic localization of mitochondrial actin-like protein biosynthesis.  相似文献   

2.
G Brandolin  I Marty  P V Vignais 《Biochemistry》1990,29(41):9720-9727
A rapid filtration technique has been used to measure at room temperature the kinetics of ADP and ATP transport in rat heart mitochondria in the millisecond time range. Transport was stopped by cessation of the nucleotide supply, without the use of a transport inhibitor, thus avoiding any quenching delay. The mitochondria were preincubated for 30 s either in isotonic KCl containing succinate, MgCl2, and Pi (medium P) or in isotonic KCl supplemented only with EDTA and Tris (medium K); they were referred to as energized and resting mitochondria, respectively. The kinetics of [14C]ADP transport in energized mitochondria were apparently monophasic. The plateau value for [14C]ADP uptake reached 4-5 nmol of nucleotide.(mg of protein)-1. Vmax values for [14C]ADP transport of 400-450 nmol exchanged.min-1.(mg of protein)-1 with Km values of the order of 13-15 microM were calculated, consistent with rates of phosphorylation in the presence of succinate of 320-400 nmol of ATP formed.min-1.(mg of protein)-1. The rate of transport of [14C]ATP in energized mitochondria was 5-10 times lower than that of [14C]ADP. Upon uncoupling, the rate of [14C]ATP uptake was enhanced, and that of [14C]ADP uptake was decreased. However, the two rates did not equalize, indicating that transport was not exclusively electrogenic. Transport of [14C]ADP and [14C]ATP by resting mitochondria followed biphasic kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have investigated the transfer of [14C]cholesterol from labeled bovine heart mitochondria and Friend erythroleukemic cells to high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) fractions from human and rat plasma. The lipoprotein fractions were obtained by molecular sieve chromatography of plasma on agarose A-5m columns. For either membrane system, the highest rate of [14C]cholesterol transfer was observed with the human and the rat HDL fraction. Since the mitochondria lack the receptors for HDL, one may conclude that the observed preferential transfer is not governed by a receptor-controlled interaction of HDL with the membrane. Under conditions where the pool of free cholesterol in the lipoprotein fractions was the same, HDL was a much more efficient acceptor of [14C]cholesterol from mitochondria than LDL or VLDL. Similarly, transfer of [14C]cholesterol proceeded at a higher rate to HDL than to sonicated egg phosphatidylcholine (PC) vesicles, even under conditions where there was a tenfold excess of the vesicle-PC pool over the HDL phospholipid pool. This preferred transfer of [14C]cholesterol to HDL cannot be explained by a random diffusion of monomer cholesterol molecules. Rather, it shows that HDL has a specific effect on this process in the sense that it most likely enhances the efflux of cholesterol from the membrane. Treatment of HDL with trypsin reduced the rate of [14C]cholesterol transfer by 40-50%, indicating that protein component(s) are involved. One of these components appears to be apoA-I, as this protein was shown to enhance the transfer of [14C]cholesterol from mitochondria to lipid vesicles.  相似文献   

4.
In Krebs ascites-tumour cells, cytochrome c is segregated in the mitochondria and the level in microsomes could not be measured. At 22° in glucose–buffer Krebs cells synthesized a spectrum of proteins including cytochrome c. Mild osmotic shock in the presence of ribonuclease had little effect on incorporation of [14C]-leucine or [14C]valine into mixed mitochondrial protein but strongly inhibited synthesis of non-mitochondrial cytoplasmic proteins. Under these conditions, labelling of cytochrome c was also strongly inhibited. After pulse labelling of Krebs cells at 22° for 10min. the cytcchrome radioactivity found in mitochondria was higher than in microsomes. After addition of unlabelled amino acid as `chase' there was 137% increase in radioactivity of cytochrome c but only a 3% increase in radioactivity of whole-cell protein. It is concluded that the peptide chain of cytochome c is synthesized on cytoplasmic ribosomes. Mitochondria therefore do not have the character of self-replicating entities, but are formed by the cooperative function of messenger RNA of cytoplasmic ribosomes and, possibly, of intramitochondrial messenger derived from the mitochondrial DNA.  相似文献   

5.
Using affinity chromatography on DNAase I-Sepharose, an actin-like protein was isolated from rat liver mitochondria and purified 60-fold. SDS electrophoresis in polyacrylamide gel revealed that the protein migrated with muscle actin and thus had the molecular weight of 42 000 Da. Evidence for the actin-like nature of the mitochondrial protein could be obtained from the fact that the protein inhibited the activity of pancreatic DNAase I which, similar to the smooth muscle protein, was less conspicuous than that of its muscle counterpart. Unlike striated muscle actin but similar to the smooth muscle protein, the mitochondrial actin weakly stimulated the Mg-ATPase activity of rabbit skeletal muscle myosin. After manyfold washing of the mitochondria with isotonic isolation media, the content of the actin-like protein remained unchanged, which indirectly points to the presence of insignificant cytoplasmic actin contaminations. During isoelectrofocusing, the mitochondrial actin-like protein yielded two forms, i. e., beta- and gamma-isoactins, whose ratio was 8:1. The pI values for the beta- and gamma-isoforms were 5.52 and 5.59, respectively. The identical position of the absorption spectra (260 nm) and fluorescence excitation spectra (around 280 nm) maxima of the actin-like protein and smooth and skeletal muscle actins testify to their homology.  相似文献   

6.
Summary Inhibitors of, and radioactive substrates for, protein synthesis were introduced into germinating pea (Pisum sativum L.) seeds, and protein synthesis was allowed to proceed in vivo. Subsequent analyses of subcellular fractions showed the following: Cycloheximide strongly inhibited the incorporation of [14C]leucine into both mitochondrial and cytoplasmic proteins. d-Threo-chloramphenicol and erythromycin did not affect cytoplasmic protein synthesis, but partially inhibited mitochondrial protein synthesis. These results suggest that most of the new mitochondrial proteins were originally synthesized in the cytoplasm. Actinomycin D did not appreciably affect the initial incorporation of [14C]leucine into either mitochondrial or cytoplasmic proteins, suggesting that information (mRNA) concerning the initially synthesized proteins may be present in the quiescent seeds. The lack of appreciable incorporation of [3H]thymidine into mitochondrial DNA supported our previons report that mitochondria may not be synthesized de novo in pea cotyledons.  相似文献   

7.
Y Briand  R Debise  R Durand 《Biochimie》1975,57(6-7):787-796
Phosphate transport in mitochondria was investigated with respect to its inhibition by NEM. The reactivity of the Pi carrier SH groups was influenced by phosphate or ionophores during preincubation before the addition of NEM. Furthermore in order to obtain some mitochondrial protein fractions where the typical effects of phosphate and ionophores on [14C]-NEM fixations were observed, mitochondria were submitted to hypotonic treatment and sonication. The following results were obtained: 1. -- Phosphate and grisorixin (a new ionophore of the nigericin group) decreased the inhibition of phosphate transport by NEM. The same effect was observed for [14C]-NEM incorporation. 2. -- Valinomycin increased [14C]-NEM incorporation. The valinomycin effect was abolished by phosphate. ClCCP alone affected [14C]-NEM incorporation slightly. Valinomycin plus ClCCP decreased NEM inhibition of phosphate transport and [14C]-NEM incorporation like grisorixin. 3. -- The variability of SH group reactivity can be interpreted by a control of SH group accessibility by transmembrane delta pH as previously suggested. 4. -- Typical effects of phosphate or ionophores were observed in whole pig heart and rat liver mitochondria. These effects were enhanced in the same supernatant protein fraction resulting from sonication in pig heart mitochondria : phosphate decreased [14C]-NEM incorporation by 1,50 nmoles/mg protein, grisorixin by 0.95 nmoles, whereas valinomycin increased it by 0.75 nmoles. For rat liver mitochondria the phosphate effect and the valinomycin increased it by 0.75 nmoles. For rat liver mitochondria the phosphate effect valinomycin effect on [14C]-NEM incorporation were observed in the subparticular fraction obtained after sonification.  相似文献   

8.
A rat pheochromocytoma (PC12) cell line was used to examine the possibility that 5-hydroxytryptamine (serotonin), 3,4-dihydroxyphenylethylamine (dopamine), or noradrenaline may be associated with cytoplasmic actin, as was suggested by previous in vitro binding studies on an actin-like protein from rat brain synaptosomes. When PC12 cells were incubated with [3H]serotonin. [3H]dopamine, or [3H]noradrenaline for 30 min at 37 degrees C, approximately 2-4% of the radioactivity present in the cells was found to be associated with a high-molecular-weight (actin-like) component in supernatant fractions. Evidence relating this monoamine binding component to actin filaments includes: (a) its strong absorption by myosin filaments at low ionic strength: (b) a decrease in its affinity for myosin in the presence of 1 mM ATP, which lowers the affinity of authentic actin for myosin: (c) displacement of bound [3H]serotonin from it by DNase I, which binds strongly to actin and which inhibits [3H]serotonin binding to actin in vitro; (d) an increase in its binding of each monoamine (by 25-40%) after PC12 cells were preincubated with 10 microM cytochalasin B (a drug that induces depolymerization of F-actin). These findings suggest that serotonin, dopamine, or noradrenaline may associate with actin filaments in vivo.  相似文献   

9.
1. A formula is given that describes the appearance of [14C]ATPADP outside the mitochondria after the addition of [14C] 1atp during the steady-state uncoupler-induced hydrolysis of extramitochondrial ATP. If the transported adenine nucleotides equilibrate with the intramitochondrial pool, [14C]ADP0 would be expected to appear with a lag phase that corresponds with the time needed for the radioactive labelling of the intramitochondrial adenine nucleotide pool. 2. The rates of formation of [14C]ADP outside the mitochondria after addition of [14C]ATP during the steady-state uncoupler-induced ATP hydrolysis catalysed by rat-liver mitochondria at 0 degree C were measured. 3. In the presence of carbonyl cyanide m-chlorophenylhydrazone the time course of the [14]ADPo formation was the same as that predicted on the basis of the above assumption. 4. In the presence of the less effective uncoupler, 2,4-dinitrophenol, the time course of [14C]ADPo formation was not consistent with the theoretical predictions: no lag phase was present and the measured rate was higher than the maximal calculated rate. These results can be explained by assuming a functional interaction between the adenine nucleotide translocator and the mitochondrial ATPase (F1). 5. It is concluded that under phosphorylating as well as dephosphorylating conditions, the adenine nucleotide translocator and the mitochondrial ATPase can be functionally linked to catalyse phosphorylation or dephosphorylation of extramitochondrial ADP or ATP, without participation of the intramitochondrial adenine nucleotides.  相似文献   

10.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

11.
The nature of endogenous acceptor molecules implicated in the membrane-directed synthesis of the polysialic acid (polySia) capsule in Escherichia coli K1 serotypes is not known. The capsule contains at least 200 sialic acid (Sia) residues that are elongated by the addition of new Sia residues to the nonreducing termini of growing nascent chains (Rohr, T. E., and Troy, F. A. (1980) J. Biol. Chem. 255, 2332-2342). Presumably, chain growth starts when activated Sia residues are transferred to acceptors that are not already sialylated. In the present study, we used an acapsular mutant defective in synthesis of CMP-NeuAc to label acceptors with [14C]NeuAc and an anti-polySia-specific antibody (H.46) to identify the molecules to which the polySia was attached. [14C]Sia-labeled acceptors were solubilized with 2% Triton X-100, immunoprecipitated with H.46, and partially depolymerized with poly-alpha-2,8-endo-N-acetylneuraminidase. Approximately 5% of the [14C]Sia incorporated remained attached to endogenous acceptors. Double-labeling experiments were used to show that the non-Sia moiety of the acceptor was labeled in vivo with [14C]leucine and elongated in vitro with CMP-[3H]NeuAc. Concomitant with desialylation of the [3H]polySia-[14C]Leu acceptor was the appearance of a new [14C]Leu-labeled protein at 20 kDa. After strong acid hydrolysis, the 20-kDa labeled protein was shown to contain [14C]Leu. The acceptor molecules were not labeled metabolically with D-[3H]GlcN, 35SO4, or 32PO4, indicating that they do not appear to contain lipopolysaccharide, peptidoglycan, phosphatidic acid, or phospholipid. Based on these results, we conclude that the endogenous acceptor molecule is a membrane protein of about 20 kDa. The nature of attachment of polySia to acceptor is unknown. There are only 400-500 acceptor molecules/cell, which is about 100-fold fewer than the 50,000 polySia chains/cell. This suggests that each acceptor molecule may participate in the shuttling of about 100 polySia chains/cell. We hypothesize that the acceptor protein may function to translocate polySia chains from their site of synthesis on the cytoplasmic surface of the inner membrane to the periplasm.  相似文献   

12.
We describe purification of three different states of the 82-kDa K+/H+ antiporter from rat liver mitochondria. The denatured 82-kDa protein, identified by its selective labeling with [14C]dicyclohexylcarbodiimide (DCCD), was purified by preparative two-dimensional gel electrophoresis. This purified product was used to raise and immunopurify monospecific polyclonal antibodies. Western blot analysis showed that the [14C] DCCD-labeled 82-kDa protein is not a DCCD-crosslinked product. The native, [14C]DCCD-labeled, 82-kDa protein was purified by (NH4)2SO4 fractionation and column chromatography, using 14C labeling and gel electrophoresis to track the protein. The native, non-DCCD-labeled 82-kDa protein was purified by similar procedures, using immunopurified antibodies to track the protein. DCCD binding had no effect on chromatographic behavior of the antiporter protein. This protocol resulted in purification of the 82-kDa protein to apparent homogeneity. The purified, native 82-kDa protein was reconstituted into proteoliposomes and assayed for K+ transport with the new fluorescent probe, PBFI. K+ transport was electroneutral and was inhibited by DCCD, Mg2+, and timolol. The turnover number for K+ transport was about 1000 s-1, very similar to the value previously estimated in intact mitochondria.  相似文献   

13.
1. The distribution of labeled and unlabeled adenine-nucleotides inside and outside mitochondria was followed after addition of [14C]ADP to rat liver mitochondria. Two types of mitochondria were used: 1, respiring mitochondria which were carrying out oxidative phosphorylation and which had been replenished in ATP by incubation in a medium supplemented with succinate and phosphate; 2, non-respiring mitochondria which had been partially depleted of ATP by incubation in a medium supplemented with rotenone and phosphate. During the first minute following addition of [14C]ADP to the respiring mitochondria, the pre-existing intramitochondrial (internal) [12C]ATP was released into the medium and replaced by newly synthesized [14C]ATP. No [14C]ADP accumulated in the mitochondria. It is suggested that extramitochondrial (external) ADP entering respiring mitochondria in exchange for internal ATP is phosphorylated to ATP before its complete release in the matrix space. In non-respiring mitochondria, the entry of [14C]ADP into the mitochondria was accompanied by the appearance in the external space of [12C]ADP and [12C]ATP, with a marked predominance of [12C]ADP. Thus in non-respiring mitochondria, the residual internal ATP is dephosphorylated to ADP in the inner membrane before being released outside the mitochondria. 2. When mitochondria were incubated with glutamate, ADP and [32P]phosphate, the [32P]ATP which accumulated in the matrix space became rapidly labeled in both the P gamma and P beta groups of the ATP, due to the presence of a transphosphorylation system in the mitochondrial matrix. The [32P]ATP which accumulated outside the mitochondria was also labeled in the P beta group, although less rapidly than the internal ATP. Our data show that a large fraction (75-80%) of the ATP produced by phosphorylation of added ADP within the inner mitochondrial membrane is released into the matrix space before being transported out from the mitochondria; only a small part (20-25%) is released directly outside the mitochondria without penetrating the matrix space. 3. In respiring and phosphorylating mitochondria, the value of the Km of the ADP-carrier for external ADP was 2-4 times lower than its value in non-respiring and non-phosphorylating mitochondria. 4. The above experimental data are discussed with reference to the topological and functional relationships between the ADP-carrier and the oxidative phosphorylation complex in the inner mitochondrial membrane. They strongly suggest that the ADP-carrier comes to the close neighbourhood of the ATP synthetase on the matrix side of the inner membrane.  相似文献   

14.
In growing maize root tissue [14C]asparagine formation in inhibited and [14C]glutamine accumulation stimulated by treatment with cycloheximide or glutamine analogs such as azaserine. In contrast, puromycin enhances the accumulation of [14C]asparagine but not [14C]glutamine. Cycloheximide and puromycin alone inhibit protein synthesis. This is interpreted to mean that the alteration in amide metabolism following cycloheximide treatment is a direct result of the antibiotic acting as a glutamine analog. While cycloheximide is often the cytoplasmic protein synthesis inhibitor of choice due to its potency and rapid action, its assumed specificity of action of eukaryotes is doubtful.  相似文献   

15.
1. Washed guinea-pig cerebral-cortex mitochondria incorporate [(14)C]leucine into their protein at a rate comparable with the rates reported for liver or heart mitochondria only if the mitochondria are separated from myelin and nerve endings by density-gradient centrifugation. 2. The non-mitochondrial components (myelin and nerve endings) of brain mitochondrial preparations incorporated [(14)C]leucine at a negligible rate. 3. The mitochondria do not require an exogenous supply of energy or a full supply of amino acids to support the process. 4. The incorporation rate was linear up to 2hr. aerobic incubation at 30 degrees and was inhibited by chloramphenicol, only slightly by actinomycin D and not by penicillin or pretreatment with ribonuclease. The observed incorporation is considered to be unlikely to be due to contaminating cytoplasmic ribosomes or bacteria. 5. The process was also studied in mitochondrial preparations from rabbit cerebral cortex and spinal cord.  相似文献   

16.
The metabolism of hydroxypyruvate to oxalate was studied in isolated rat hepatocytes. [14C]Oxalate was produced from [2-14C]- and [3-14C]- but not [1-14C]hydroxypyruvate. No oxalate was produced from similarly labeled pyruvate. The mechanism by which hydroxypyruvate is metabolized to oxalate involves decarboxylation at the carbon 1 position as the initial step. This activity was distinct from that which produced CO2 from the carbon 1 position of pyruvate. Hydroxypyruvate decarboxylase activity was found mainly in the mitochondria, with the remainder (25%) in the cytosol. No activity was present in the peroxisomes, the probable site of oxalate production from glycolate and glyoxylate. Hydroxypyruvate, but not pyruvate stimulated [14C]oxalate production from [U-14C]fructose, suggesting that hydroxypyruvate is either an intermediate in the fructose-oxalate pathway, or that it prevents carbon from leaving that pathway. The lack of effect of pyruvate in this regard is evidence against redox being the primary effect of hydroxypyruvate and focuses attention on hydroxypyruvate and its precursors as important sources of carbon for oxalate synthesis from both carbohydrate and protein.  相似文献   

17.
The capacity of cyclosporin A to inhibit opening of a Ca2+-dependent pore in the inner membrane of heart mitochondria was investigated. Whereas in the presence of 25 nmol of Ca2+/mg of mitochondrial protein and 5 mM-Pi mitochondria were unable to maintain accumulated Ca2+, inner-membrane potential and sucrose impermeability, all three parameters were preserved when cyclosporin was included. Pore opening was assayed directly by [14C]sucrose entry and entrapment in the matrix space. [14C]Sucrose entry induced by both Ca2+ plus Pi and Ca2+ plus t-butyl hydroperoxide was almost completely inhibited by 60 pmol of cyclosporin/mg of mitochondrial protein. It is concluded that cyclosporin A is a potent inhibitor of the pore.  相似文献   

18.
Time courses for inhibition of carnitine palmitoyltransferase (CPT) I activity in, and [14C]malonyl-CoA binding to, liver mitochondria from fed or 48 h-starved rats were obtained at 37 degrees C by using identical incubation conditions and a fixed concentration of malonyl-CoA (3.5 microM), which represents the middle of the physiological range observed previously [Zammit (1981) Biochem. J. 198, 75-83] Incubation of mitochondria in the absence of malonyl-CoA resulted in a time-dependent decrease in the ability of the metabolite instantaneously to inhibit CPT I and to bind to the mitochondria. Both degree of inhibition and binding were restored in parallel over a period of 6-8 min on subsequent addition of malonyl-CoA to the incubation medium. However, the increased inhibition of CPT I activity on addition of mitochondria directly to malonyl-CoA-containing medium was not accompanied by an increase in the amount of [14C]malonyl-CoA bound to mitochondria at 37 degrees C. Time courses for binding of [14C]malonyl-CoA performed at 0 degree C were different from those obtained at 37 degrees C. There was little loss of ability of [14C]malonyl-CoA to bind to mitochondria on incubation in the absence of the metabolite, but there was a time-dependent increase in binding on addition of mitochondria to malonyl-CoA-containing medium. It is suggested that these temperature-dependent differences between the time courses obtained may be due to the occurrence of different changes at 37 degrees C and at 0 degree C in the relative contributions of different components (with different affinities) to the binding observed at 3.5 microM-malonyl-CoA. Evidence for multi-component binding was obtained in the form of strongly curvilinear Scatchard plots for instantaneous (5s) binding of malonyl-CoA to mitochondria. Such multi-component binding would be expected from previous results on the different affinities of CPT I for malonyl-CoA with respect to inhibition [Zammit (1984) Biochem. J. 218, 379-386]. Mitochondria obtained from starved rats showed qualitatively the same time courses as those described above, with notable quantitative differences with respect both to the absolute extents of CPT I inhibition and [14C]malonyl-CoA binding achieved as well as to the time taken to attain them.  相似文献   

19.
It has been found that amytal competitively inhibits succinate (+ rotenone) oxidation by intact uncoupled mitochondria. Similar results were obtained in metabolic state 3, the Ki value being 0.45 mM. Amytal did not effect succinate oxidation by broken mitochondria and submitochondrial particles (at a concentration which inhibited succinate oxidation by intact mitochondria). Amytal inhibited the swelling of mitochondria suspended in ammonium succinate or ammonium malate but was without effect on the swelling of mitochondria in ammonium phosphate and potassium phosphate in the presence of valinomycin+carbonylcyanide p-trifluoromethoxyphenylhydrazone.Using [14C] succinate and [14C] citrate it has been shown that amytal inhibited the succinate/succinate, succinate/Pi, succinate/malate, and citrate/citrate and citrate/malate exchanges. Amytal inhibited Pi transport across mitochondrial membrane only if preincubated with mitochondria. Other barbiturates: phenobarbital, dial, veronal were found to inhibit [14C]succinate/anion (Pi, succinate, malonate, malate) exchange reactions in a manner similar to amytal. It is concluded that barbiturates non-specifically inhibit the dicarboxylate carrier system, tricarboxylate carrier and Pi translocator. It is postulated that the inhibition of succinate oxidation by barbiturates is caused mainly by the inhibition of succinate and Pi translocation across the mitochondrial membrane.  相似文献   

20.
1. The activities of pyruvate dehydrogenase in rat lymphocytes and mouse macrophages are much lower than those of the key enzymes of glycolysis and glutaminolysis. However, the rates of utilization of pyruvate (at 2 mM), from the incubation medium, are not markedly lower than the rate of utilization of glucose by incubated lymphocytes or that of glutamine by incubated macrophages. This suggests that the low rate of oxidation of pyruvate produced from either glucose or glutamine in these cells is due to the high capacity of lactate dehydrogenase, which competes with pyruvate dehydrogenase for pyruvate. 2. Incubation of either macrophages or lymphocytes with dichloroacetate had no effect on the activity of subsequently isolated pyruvate dehydrogenase; incubation of mitochondria isolated from lymphocytes with dichloroacetate had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, and the double-reciprocal plot of [1-14C]pyruvate concentration against rate of 14CO2 production was linear. In contrast, ADP or an uncoupling agent increased the rate of 14CO2 production from [1-14C]pyruvate by isolated lymphocyte mitochondria. These data suggest either that pyruvate dehydrogenase is primarily in the a form or that pyruvate dehydrogenase in these cells is not controlled by an interconversion cycle, but by end-product inhibition by NADH and/or acetyl-CoA. 3. The rate of conversion of [3-14C]pyruvate into CO2 was about 15% of that from [1-14C]pyruvate in isolated lymphocytes, but was only 1% in isolated lymphocyte mitochondria. The inhibitor of mitochondrial pyruvate transport, alpha-cyano-4-hydroxycinnamate, inhibited both [1-14C]- and [3-14C]-pyruvate conversion into 14CO2 to the same extent, and by more than 80%. 4. Incubations of rat lymphocytes with concanavalin A had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, but increased the rate of conversion of [3-14C]pyruvate into 14CO2 by about 50%. This suggests that this mitogen causes a stimulation of the activity of pyruvate carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号