首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The left eye was removed from Stage 56 Xenopus tadpoles. Two to 9 months after metamorphosis, electrophysiologic analysis showed that the surviving (right) eye mediated a normal visual field projection to the left (contralateral) optic tectum. In addition, a peripheral region of the same retina innervated the entire right (ipsilateral) tectum. Primary evidence that indicates this anomalous ipsilateral projection was due to direct retina-to-tectum innervation comes from singleunit analysis, latency measurements, and tectal lesion studies. Thus, the peripheral retina simultaneously connected in much different patterns to the two optic tecta, solely on the basis of the presence (in the left tectum) or absence (in the right tectum) of central retinal fibers. This documents a role for fiber-fiber interaction (such as repulsion or competition) acting in combination with fiber-tectum interactions in the formation of the retinotectal map.  相似文献   

2.
Competitive and positional cues in the patterning of nerve connections   总被引:1,自引:0,他引:1  
The visual system of lower vertebrates has served as an important testing ground for the mechanisms that generate topographic neuronal connections. During both the outgrowth and the regeneration of the optic nerve, a smoothly ordered map of the retina is formed on its major target, the optic tectum (the retinotectal projection). Experiments performed on this projection have offered support for a variety of mechanisms, including the matching of positional cues in the retina and tectum, the guidance of nerve fibers by interactions between fibers, competition for synaptic space, and the refinement of connections based on neuronal activity. Unfortunately, individual experiments that support any one of these mechanisms have been taken at times as evidence against the involvement of any other mechanism; for example, experiments demonstrating the importance of positional cues have been thought mistakenly to indicate that activity-based interactions are unimportant. Computer simulations, in which multiple, somewhat opposed, mechanisms are allowed to operate in concert demonstrate that such a hybrid model is able to generate a full range of experimental results. More importantly, the elimination of any one of the mechanisms renders the model unable to fit entire classes of findings. Thus, the patterning of the retinotectal projection is best viewed as a process in which the optic nerve terminals attempt to satisfy multiple constraints in selecting their target sites.  相似文献   

3.
In the retinotectal projection, the Eph receptor tyrosine kinase ligands ephrinA2 and ephrinA5 are differentially expressed not only in the tectum, but also in a high-nasal-to-low-temporal pattern in the retina. Recently, we have shown that retrovirally driven overexpression of ephrinA2 on retinal axons leads to topographic targeting errors of temporal axons in that they overshoot their normal termination zones in the rostral tectum and project onto the mid- and caudal tectum. The behavior of nasal axons, however, was only marginally affected. Here, we show that overexpression of ephrinA5 affects the topographic targeting behavior of both temporal and nasal axons. These data reinforce the idea that differential ligand expression on retinal axons contributes to topographic targeting in the retinotectal projection. Additionally, we found that ectopic expression of ephrinA2 and ephrinA5 frequently leads to pathfinding errors at the chiasm, resulting in an increased stable ipsilateral projection.  相似文献   

4.
5.
Evidence for pattern regulation in the developing Xenopus visual system has previously been obtained after surgical manipulations of the eyebud early in development. In one experimental paradigm, a "compound" eye is produced by combining a nasal (anterior) half-eyebud with normal dorsoventral polarity and a temporal (posterior) half-eyebud with inverted dorsoventral polarity. The adult retinotectal projection from such compound eyes, as assayed by electrophysiological mapping techniques, shows normal dorsoventral polarity in both halves, indicating an apparent reversal in the polarity of the surgically-inverted half. We have utilized a fluorescent vital-dye fiber-tracing technique to investigate the early events in this regulatory process. The results show that the change in dorsoventral polarity is not due to cell movements in the eyebud after surgery. Interestingly, the experiments also demonstrate that the pattern of connections initially formed by the developing eye does not reflect the pattern regulation observed in the adult retinotectal map; instead, the temporal half of the eye projects to the tectum with inverted dorsoventral order. Thus, the regulation observed in the adult does not become evident in the pattern of the projection until after early larval development.  相似文献   

6.
Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish.  相似文献   

7.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11-18 months later) 2.5-5.8 times, and the surface of the retina 8.6-14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   

8.
本文用微量显微注射法,在金鱼视网膜的背侧用亲脂类荧光染料DiI标记少量神经节细胞,通过顺行标记研究了视神经再生过程中视网膜顶盖投射的精确化过程。在损伤视神经后的不同时期观察了再生视神经纤维在顶盖整装片上的分布。在再生早期它们以超出正常的途径由背腹两侧进入顶盖,广泛分布。但其中大部分仍分布于顶盖腹侧的靶区。在再生晚期通过精确化,重建如正常鱼一样精确的视网膜顶盖投射。这个精确化过程表现在以下三方面:(1)再生于顶盖错误区域的再生视神经纤维的消失;(2)再生早期视神经纤维主干上生长的侧部分支的消失;(3)到达靶区的再生视神经纤维形成重迭的终末分支。由以上结果推测,顶盖中可能存在两类不同的因子:一类是普通诱向因子,存在于整个顶盖中,它在再生早期引导再生的视神经纤维长入顶盖。另一类是神经营养因子,它具区域特异性,在再生晚期引导视神经纤维到达顶盖靶区,形成精确的视网膜顶盖投射。  相似文献   

9.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11–18 months later) 2.5–5.8 times, and the surface of the retina 8.6–14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   

10.
Model calculations are presented for the several properties of the development of the retinotectal projection in amphibians and fishes, using the Gierer-Meinhardt equations. One of these properties is the maintenance of topographic mapping between the retina and the tectum during their development despite the fact that the two tissues grow in morphologically different ways. Another is the existence of a critical period, at which the coordinates of the retina with respect to the tectum are irrevocably determined. It is assumed that the connections between the retinal and the tectal cells are made on the correspondence of positional markers which are given as a form of the distribution of a specific activator, the dynamics of which is described by the Gierer-Meinhardt equations. The monotonic distributions of the activator and the existence of the critical period are shown by a computer simulation of the proliferating retina. Several changes of the retinotectal projection after surgical operations on the retina or the tectum are also explained.Some of the results in this paper were presented at the poster session of the 6th International Biophysics Congress in Kyoto 1978  相似文献   

11.
During regeneration of the optic nerve in goldfish, the ingrowing retinal fibers successfully seek out their correct places in the overall retinotopic projection on the tectum. Chemospecific cell-surface interactions appear to be sufficient to organize only a crude retinotopic map on the tectum during regeneration. Precise retinotopic ordering appears to be achieved via an activity-dependent stabilization of appropriate synapses and is based upon the correlated activity of neighboring ganglion cells of the same receptive-field type in the retina. Four treatments have been found to block the sharpening process: (a) blocking the activity of the ganglion cells with intraocular tetrodotoxin (TTX), (b) rearing in total darkness, (c) correlating the activation of all ganglion cells via stroboscopic illumination and (d) blocking retinotectal synaptic transmission with alpha-bungarotoxin (alphaBTX). These experiments support a role for correlated visually driven activity in sharpening the diffuse projection and suggest that this correlated activity interacts within the postsynaptic cells, probably through the summation of excitatory postsynaptic potentials (EPSPs). Other experiments support the concept that effective synapses are stabilized: a local postsynaptic block of transmission causes a local disruption in the retinotectal map. The changes that occur during this disruption suggest that each arbor can move to maximize its synaptic efficacy. In development, initial retinotectal projections are often diffuse and may undergo a similar activity-dependent sharpening. Indirect retinotectal maps, as well as auditory maps, appear to be brought into register with the direct retinotopic projections by promoting the convergence of contacts with correlated activity. A similar mechanism may drive both the formation of ocular dominance patches in fish tectum and kitten visual cortex and the segregation of different receptive-field types in the lateral geniculate nucleus. Activity-dependent synaptic stabilization may therefore be a general mechanism whereby the diffuse projections of early development are brought to the precise, mature level of organization.  相似文献   

12.
Protein kinase C (PKC) activation has been associated with synaptic plasticity in many projections, and manipulating PKC in the retinotectal projection strongly affects the activity-driven sharpening of the retinotopic map. This study examined levels of PKC in the regenerating retinotectal projection via immunostaining and assay of activity. A polyclonal antibody to the conserved C2 (Ca2+ binding) domain of classical PKC isozymes (anti-panPKC) recognized a single band at 79–80 kD on Western blots of goldfish brain. It stained one class of retinal bipolar cells and the ganglion cells in normal retina, as shown previously. Strong staining was not present in the optic fiber layer of retina or in optic nerve, optic tract, or terminal zone in tectum, with the exception of a single fascicle of optic nerve fibers that by their location and by L1 (E587) staining were identified as those arising from newly added ganglion cells at the retinal margin. Normal tectal sections showed dark staining of a subclass of type XIV neuron with somas at the top of the periventricular layer and an apical dendrite ascending to stratum opticum. In regenerating retina, swollen ganglion cells stained darkly and stained axons were seen in the optic fiber layer. In regenerating optic nerve (2–11 weeks postcrush), all fascicles of optic fibers stained darkly for both PKC and L1(E587). At 5 weeks postcrush, PKC staining could also be seen in the medial and lateral optic tracts and stratum opticum at the front half of the tectum and very lightly over the terminal zones. PKC activity was measured in homogenized tissues dissected from a series of fish with unilateral nerve crush from 1 to 5 weeks previously. Activity levels stimulated by phorbols and Ca2+ were measured by phosphorylation of a specific peptide and referred to levels measured in the opposite control side. Regeneration did not increase overall PKC activity in retina or tectum, but in optic nerve there was an 80% rise after the first week. The increased activity verifies that the increased staining in nerve represented an up-regulation of functional PKC during nerve regeneration. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 315–324, 1998  相似文献   

13.
In the visual system of Xenopus laevis, the axons from the retinal ganglion cells of the eye form a topographic projection onto the optic tectum. Many studies have focused on revealing the mechanisms responsible for this precise and regular projection pattern. In contrast to the static view of the system that one might expect from examining the regularity of the projection, recent work on its regeneration and its changes during larval development indicate that part of the patterning process involves the dynamic behavior of optic fibers. Typically, anatomical and electrophysiological techniques have been used to obtain static views of the developing retinotectal projection which then must be complied to provide a glimpse of any dynamic behavior. Here we report on experiments using a newly developed fiber tracing technique to directly follow the emergence of topography in the developing retinotectal projection. Defined halves of the developing eyebud were labeled with a vital fluorescent dye which fills the growing axons, and the projection of the labeled cells was followed for up to 2 weeks in individual animals. The experiments confirm that dorsal and ventral optic nerve fibers sort out into an ordered projection early in development. In contrast, nasal and temporal fibers initially overlap, and the same sets of prelabeled fibers then sort out into the adult topography over a period of days.  相似文献   

14.
Graded expression of the Eph receptor EphA3 in the retina and its two ligands, ephrin A2 and ephrin A5 in the optic tectum, the primary target of retinal axons, have been implicated in the formation of the retinotectal projection map. Two homeobox containing genes, SOHo1 and GH6, are expressed in a nasal-high, temporal-low pattern during early retinal development, and thus in opposing gradients to EphA3. Retroviral misexpression of SOHo1 or GH6 completely and specifically repressed EphA3 expression in the neural retina, but not in other parts of the central nervous system, such as the optic tectum. Under these conditions, some temporal ganglion cell axons overshot their expected termination zones in the rostral optic tectum, terminating aberrantly at more posterior locations. However, the majority of ganglion cell axons mapped to the appropriate rostrocaudal locations, although they formed somewhat more diffuse termination zones. These findings indicate that other mechanisms, in addition to differential EphA3 expression in the neural retina, are required for retinal ganglion axons to map to the appropriate rostrocaudal locations in the optic tectum. They further suggest that the control of topographic specificity along the retinal nasal-temporal axis is split into several independent pathways already at a very early time in development.  相似文献   

15.
The patterned neural projection from the eye to the optic tectum of lower vertebrates (the retinotectal projection) has been proposed to be ordered by interactions between the optic nerve fibers and their surrounding tissues. To investigate the role of one such defined cell interaction, agarose implants containing antibodies to the neural cell adhesion molecule, N-CAM, were inserted into the tectum of the African clawed frog, Xenopus laevis. Both monoclonal and polyclonal antibodies against N-CAM reversibly and specifically distorted the pattern of the retinotectal projection, decreasing the precision of the projection as determined by electrophysiological techniques as well as decreasing the density of retinal innervation of the tectum and the branching of single axons as determined by horseradish peroxidase tracing. The anatomical effects became maximal at 4 to 6 days after implantation and returned to undetectable levels by 2 weeks, whereas the physiological effects became maximal by 8 to 10 days and a normal physiological map was reestablished within 4 weeks. The results are consistent with the hypothesis that anti-N-CAM antibodies perturb the ongoing growth and retraction of the terminal arbors of the optic nerve fibers, such that a region of the tectum becomes largely denuded of fibers. The physiological defects may then be a consequence both of the initial retraction of optic nerve terminals and of the rapid ingrowth of the perturbed and neighboring optic nerve fibers into the denuded region after the antibodies were cleared from the tectum. These results support the concept of a major role for N-CAM-mediated adhesion during map regeneration and maintenance.  相似文献   

16.
17.
How does each ingrowing retinal fiber select the right spot in the overall retinotopic projection? Chemospecific surface interactions appear to be sufficient only to organize a crude retinotopic map on the tectum during regeneration of the optic nerve of goldfish. Precise retinotopic ordering is achieved via an activity-dependent stabilization of appropriate synapses, based on the correlated activity of neighboring ganglion cells of the same receptive field type in the retina. Four treatments have been found to block the sharpening process: 1) blocking activity of the ganglion cells with intraocular tetrodotoxin (TTX); 2) rearing in total darkness; 3) correlated activation of all ganglion cells via stroboscopic illumination in a featureless environment; 4) block of retinotectal synaptic transmission with alpha-bungarotoxin. These experiments support a role for normal visually driven activity in sharpening the diffuse projection, and demonstrate that the correlated activity of the optic fibers interacts within the postsynaptic cells, probably through the summation of excitatory postsynaptic potentials. Intraocular TTX experiments suggest that a similar mechanism may drive both the formation of ocular dominance patches in fish tectum and kitten visual cortex and the segregation of different receptive field types in the lateral geniculate nucleus. Thus, it may be a general mechanism whereby the diffuse projections of early development are brought to a mature level of organization.  相似文献   

18.
Lampreys, which represent the oldest group of living vertebrates (cyclostomes), show unique eye development. The lamprey larva has only eyespot‐like immature eyes beneath a non‐transparent skin, whereas after metamorphosis, the adult has well‐developed image‐forming camera eyes. To establish a functional visual system, well‐organised visual centres as well as motor components (e.g. trunk muscles for locomotion) and interactions between them are needed. Here we review the available knowledge concerning the structure, function and development of the different parts of the lamprey visual system. The lamprey exhibits stepwise development of the visual system during its life cycle. In prolarvae and early larvae, the ‘primary’ retina does not have horizontal and amacrine cells, but does have photoreceptors, bipolar cells and ganglion cells. At this stage, the optic nerve projects mostly to the pretectum, where the dendrites of neurons in the nucleus of the medial longitudinal fasciculus (nMLF) appear to receive direct visual information and send motor outputs to the neck and trunk muscles. This simple neural circuit may generate negative phototaxis. Through the larval period, the lateral region of the retina grows again to form the ‘secondary’ retina and the topographic retinotectal projection of the optic nerve is formed, and at the same time, the extra‐ocular muscles progressively develop. During metamorphosis, horizontal and amacrine cells differentiate for the first time, and the optic tectum expands and becomes laminated. The adult lamprey then has a sophisticated visual system for image‐forming and visual decision‐making. In the adult lamprey, the thalamic pathway (retina–thalamus–cortex/pallium) also transmits visual stimuli. Because the primary, simple light‐detecting circuit in larval lamprey shares functional and developmental similarities with that of protochordates (amphioxus and tunicates), the visual development of the lamprey provides information regarding the evolutionary transition of the vertebrate visual system from the protochordate‐type to the vertebrate‐type.  相似文献   

19.
Many parts of the visual system contain topographic maps of the visual field. In such structures, the binocular portion of the visual field is generally represented by overlapping, matching projections relayed from the two eyes. One of the developmental factors which helps to bring the maps from the two eyes into register is visual input. The role of visual input is especially dramatic in the frog, Xenopus laevis. In tadpoles of this species, the eyes initially face laterally and have essentially no binocular overlap. At metamorphosis, the eyes begin to move rostrodorsally; eventually, their visual fields have a 170 degree region of binocular overlap. Despite this major change in binocular overlap, the maps from the ipsilateral and contralateral eyes to the optic tectum normally remain in register throughout development. This coordination of the two projections is disrupted by visual deprivation. In dark-reared Xenopus, the contralateral projection is nearly normal but the ipsilateral map is highly disorganized. The impact of visual input on the ipsilateral map also is shown by the effect of early rotation of one eye. Examination of the tectal lobe contralateral to the rotated eye reveals that both the contralateral and the ipsilateral maps to that tectum are rotated, even though the ipsilateral map originates from the normal eye. Thus, the ipsilateral map has changed orientation to remain in register with the contralateral map. Similarly, the two maps on the other tectal lobe are in register; in this case, both projections are normally oriented even though the ipsilateral map is from the rotated eye. The discovery that the ipsilateral eye's map reaches the tectum indirectly, via a relay in the nucleus isthmi, has made it possible to study the anatomical changes underlying visually dependent plasticity. Retrograde and anterograde tracing with horseradish peroxidase have shown that eye rotation causes isthmotectal axons to follow abnormal trajectories. An axon's route first goes toward the tectal site where it normally would arborize but then changes direction to reach a new tectal site. Such rearrangements bring the isthmotectal axons into proximity with retinotectal axons which have the same receptive fields. Anterograde horseradish peroxidase filling has also been used to study the trajectories and arborizations of developing isthmotectal axons. The results show that the axons enter the tectum before the onset of eye migration but do not begin to branch profusely until eye movement begins to create a zone of binocular space.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Members of the Eph-B family of receptors tyrosine kinase and their transmembrane ligands have been implicated in dorsoventral patterning of the vertebrate retinotectal projection. In the zebrafish retinotectal system, however, ephrinB2a is expressed strongly in the posterior tectum, in tectal neurons that form physical contacts with retinal ganglion cell (RGC) axons. In the gnarled mutant, where tectal neurons form ectopically in the pretectum, RGC axons stall before entering the tectum, or else are misrouted or branch aberrantly in the tectal neuropil. Ectopic expression of ephrinB2a in the anterior midbrain of wild-type embryos, with the aid of baculovirus, also inhibits RGC axon entry into the tectum. In vitro, zebrafish RGC axons are repelled by stripes of purified ephrinB2a. It is proposed that ephrinB2a may signal a subpopulation of RGC axons that they have reached their target neurons in the tectum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号