首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromaphyosemion killifishes are a karyotypically highly diverse group of small, sexually dimorphic fishes living in rainforest rivulets in tropical West and Central Africa. In the present study, we used various chromosome banding and staining techniques to analyse the karyotypes of 13 populations representing seven described species ( Chromaphyosemion loennbergii , Chromaphyosemion punctulatum , Chromaphyosemion splendopleure , Chromaphyosemion volcanum , Chromaphyosemion malumbresi , Chromaphyosemion melanogaster , Chromaphyosemion bitaeniatum ) and two undescribed forms ( Chromaphyosemion cf. lugens , Chromaphyosemion sp. Rio Muni GEMHS00/41). Diploid chromosome numbers (2 n ) and the number of chromosome arms (NF) ranged from 2 n  = 24 in C. malumbresi to 2 n  = 40 in C. bitaeniatum and from NF = 40 in C. volcanum and C. cf. lugens to NF = 54 in one population of C. loennbergii . A tentative XX/XY sex chromosome system was revealed in C. loennbergii , C. melanogaster , C. malumbresi , and Chromaphyosemion sp. Rio Muni GEMHS00/41. Mapping cytogenetic data for all described Chromaphyosemion species onto a recently published mitochondrial DNA phylogeny revealed a complex pattern of chromosomal evolution with several independent reductions of 2 n and independent modifications of NF and nucleolus organizer region phenotypes. Together with the results of preliminary crossing and mate choice experiments, the cytogenetic and molecular phylogenetic data suggest that, contrary to previous hypotheses, chromosomal rearrangements are probably not the most important and certainly not the only factor driving speciation in Chromaphyosemion killifishes.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 143–153.  相似文献   

2.
We have analyzed the phylogenetic relationships of 52 species representing all defined species groups (J. J. Scheel, 1990, Atlas of Killifishes of the Old World, 448 pp.) of the African aplocheiloid fish genera Aphyosemion and Fundulopanchax in order to examine their interrelationships and to reveal trends of karyotypic evolution. The data set comprised 785 total nucleotides from the mitochondrial 12S rRNA and cytochrome b genes. The molecular-based topologies analyzed by both maximum parsimony and neighbor-joining support the monophyly of most previously defined species groups within these two killifish genera. The genus Aphyosemion is monophyletic except for the nested position of Fundulopanchax kunzi (batesi group; subgenus Raddaella) within this clade, suggesting that this taxon was improperly assigned to Fundulopanchax. The remaining Fundulopanchax species sampled were supported as being monophyletic in most analyses. Relationships among the species groups in both genera were not as strongly supported, suggesting that further data will be required to resolve these relationships. Additional sampling from the 16S rRNA gene allowed further resolution of relationships within Fundulopanchax, more specifically identifying the nonannual scheeli group as the basal lineage of this otherwise annual genus. Chromosomal evolution within Aphyosemion has been episodic, with the evolution of a reduced n = 9-10 metacentric complement having occurred in multiple, independent lineages. Polarity of chromosomal reductions within the elegans species group appears to support previous hypotheses concerning mechanisms of karyotypic change within the genus Aphyosemion.  相似文献   

3.
Snubnose darters comprise one of the largest subgenera of the percid genus Etheostoma. Many species are described based on differences in male breeding coloration. Few morphological synapomorphies have been proposed for the subgenus and their relatives, making it difficult to delineate monophyletic clades. The phylogenetic relationships of the 20 snubnose darter species of the subgenus Ulocentra and 11 members of its proposed sister subgenus Etheostoma were investigated with partial mitochondrial DNA sequences including 1033 bp encompassing the entire mitochondrial control region, the tRNA-Phe gene, and part of the 12S rRNA gene. Two hypotheses on the relationship and monophyly of the two subgenera were evaluated. Both maximum-parsimony and neighbor-joining analyses supported monophyly of the subgenus Ulocentra and resolved some species-level relationships. The banded darter, E. zonale, and its sister taxon, E. lynceum, were not closely related to the snubnose darters and appear to be diverged from the other members of the subgenus Etheostoma, fitting their former distinction as the recognized subgenus Nanostoma. The sister group to Ulocentra appears to be a restricted species assemblage within the subgenus Etheostoma containing E. blennioides, E. rupestre, E. blennius, and the E. thalassinum species group. The placement of the harlequin darter, E. histrio, is problematic, and it may represent a basal member of Ulocentra or of the restricted subgenus Etheostoma. Despite recent estimates of divergence times between nominal Ulocentra taxa, each species exhibits its own unique set of mtDNA haplotypes, providing no direct evidence for current genetic exchange between species. The nominal taxa of snubnose darters thus appear to be evolving independently from each other and therefore constitute valid species under the Phylogenetic Species Concept.  相似文献   

4.
DNA sequences of the 12s rRNA mitochondrial gene from 12 species key to the question of the monophyly of the deep-sea fish genus Coryphaenoides (Macrouridae) were analyzed phylogenetically using maximum parsimony and maximum likelihood. The results were compared with those of three previous studies in which allozyme, peptide mapping, and DNA sequence data were similarly analyzed. The allozyme and DNA sequence data suggested that the largest subgenus (Coryphaenoides), which contained most of the species inhabiting continental slopes between approximately 600 and 2000m depth, is monophyletic. Two of the three subgenera containing the species inhabiting abyssal ocean basins below approximately 2000m together formed a sister group to subgenus Coryphaenoides. The macrourids of the abyssal basins and those of the continental slopes thus appear to have experienced separate radiations from a common ancestor.  相似文献   

5.
The genus Jesogammarus contains 16 species in two subgenera, Jesogammarus and Annanogammarus. To examine relationships among species in the genus, a molecular phylogenetic study including eight species of the former subgenus and four of the latter was conducted using partial DNA sequences of the mitochondrial COI and 12S rRNA genes. MP, NJ, and ML trees based on the combined COI and 12S data indicated monophyly of the subgenus Annanogammarus, though the monophyly of Jesogammarus was left unresolved. Consistent with few morphological differences, Jesogammarus (A.) naritai and J. (A.) suwaensis showed low genetic differentiation and did not show reciprocal monophyly, which suggests a close affinity of these taxa.  相似文献   

6.
Phylogenetic relationships of eight species of Saintpaulia H. Wendl., 19 species of Streptocarpus Lindl. (representing all major growth forms within the genus), and two outgroups (Haberlea rhodopensis Friv., Chirita spadiciformis W. T. Wang) were examined using comparative nucleotide sequences from the two internal transcribed spacers (ITS) of nuclear ribosomal DNA. The length of the ITS 1 region ranged from 228 to 249 base pairs (bp) and the ITS 2 region from 196 to 245 bp. Pairwise sequence divergence across both spacers for ingroup and outgroup species ranged from 0 to 29%. Streptocarpus is not monophyletic, and Saintpaulia is nested within Streptocarpus subgenus Streptocarpella. Streptocarpus subgenus Streptocarpus is monophyletic. The ITS sequence data demonstrate that the unifoliate Streptocarpus species form a clade, and are also characterized by a unique 47-bp deletion in ITS 2. The results strongly support the monophyly of (1) Saintpaulia, and (2) Saintpaulia plus the African members of the subgenus Streptocarpella of Streptocarpus. The data suggest the evolution of Saintpaulia from Streptocarpus subgenus Streptocarpella. The differences in flower and vegetative characters are probably due to ecological adaptation leading to a relatively rapid radiation of Saintpaulia.  相似文献   

7.
The Afrotropical fruit fly genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees produced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimodaira-Hasegawa test, they do not reject monophyly of Ceratitis.  相似文献   

8.
A cladistic analysis of Asarum was conducted to examine relationships among species within the genus and to test the monophyly of several groups of taxa that have often been treated as segregate genera. Thirty-two species were drawn from throughout the range of the genus, representing a broad sample of sections and all segregate genera. The data matrix included 37 characters derived from various aspects of vegetative and floral morphology. A strict consensus of all most parsimonious trees suggests that Asarum s.l. is monophyletic and consists of two main clades: an Asarum clade, which is characterized by connate styles and inferior ovaries, and an Asiasarum-Hexastylis-Heterotropa clade, which is characterized by ridges on the inner perianth surface, dorsal stigmas, and bifid style extensions. The latter is a large and morphologically diverse clade that includes the North American segregate Hexastylis and two Asiatic segregates. Examination of pollination mechanisms in the context of this phylogeny supports the conclusion that herkogamy, and thus obligate insect pollination, is derived from a plesiomorphic condition of autonomous self-pollination. Associated with herkogamy are characters such as glandular trichomes and other ornamentation of the surface of the calyx that probably represent increased specialization to attract insect pollinators. This study also indicates that chromosomal evolution has occurred via aneuploid decrease from an ancestral chromosome number of 2n = 26 to 2n = 24 in Heterotropa. The recognition of two subgenera, subgenus Asarum and subgenus Heterotropa, corresponding to the two clades in the cladistic analysis, is recommended.  相似文献   

9.
Paepalanthus subgenus Xeractis (Eriocaulaceae) comprises 28 recognized species endemic to the Espinhaço Range, in Minas Gerais state, Brazil. Most species of the subgenus are restricted to small localities and critically endangered, but still in need of systematic study. The monophyly of the subgenus has already been tested, but only with a few species. Our study presents the first phylogenetic hypothesis within the group, based on morphology. A maximum parsimony analysis was conducted on a matrix of 30 characters for 30 terminal taxa, including all species of the subgenus and two outgroups. The biogeographical hypotheses for the subgenus were inferred based on dispersal–vicariance analysis (DIVA). The analysis provided one most‐parsimonious hypothesis that supports most of the latest published subdivisions (sections and series). However, some conflicts remain concerning the position of a few species and the relationships between sections. The distribution and origin(s) of microendemism are also discussed, providing the ground for conservation strategies to be developed in the region. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 167 , 137–152.  相似文献   

10.
Sequences from the nuclear (nu) alcohol dehydrogenase gene, the nu 28S ribosomal RNA locus, and the mitochondrial cytochrome oxidase II gene were used both individually and in combined analyses to infer the phylogeny of the subgenus Sophophora (Diptera: Drosophilidae). We used several optimality criteria, including maximum likelihood, maximum parsimony, and minimum evolution, to analyze these partitions to test the monophyly of the subgenus Sophophora and its four largest species groups, melanogaster, obscura, saltans, and willistoni. Our results suggest that the melanogaster and obscura species groups are each monophyletic and form a closely related clade. The Neotropical clade, containing the saltans and willistoni species groups, is also recovered, as previous studies have suggested. While the saltans species group is strongly supported as monophyletic, the results of several analyses indicate that the willistoni species group may be paraphyletic with respect to the saltans species group.  相似文献   

11.
Eryngium is the largest and arguably the most taxonomically complex genus in the family Apiaceae. Infrageneric relationships within Eryngium were inferred using sequence data from the chloroplast DNA trnQ-trnK 5'-exon and nuclear ribosomal DNA ITS regions to test previous hypotheses of subgeneric relationships, explain distribution patterns, reconstruct ancestral morphological features, and elucidate the evolutionary processes that gave rise to this speciose genus. In total, 157 accessions representing 118 species of Eryngium, 15 species of Sanicula (including the genus Hacquetia that was recently reduced to synonymy) and the monotypic Petagnaea were analyzed using maximum parsimony and Bayesian methods. Both separate and simultaneous analyses of plastid and nuclear data sets were carried out because of the prevalence of polyploids and hybrids within the genus. Eryngium is confirmed as monophyletic and is divided into two redefined subgenera: Eryngium subgenus Eryngium and E. subgenus Monocotyloidea. The first subgenus includes all examined species from the Old World (Africa, Europe, and Asia), except Eryngium tenue, E. viviparum, E. galioides, and E. corniculatum. Eryngium subgenus Monocotyloidea includes all examined species from the New World (North, Central and South America, and Australia; herein called the "New World sensu stricto" clade) plus the aforementioned Old World species that fall at the base of this clade. Most sectional and subgeneric divisions previously erected on the basis of morphology are not monophyletic. Within the "New World sensu stricto" group, six clades are well supported in analyses of plastid and combined plastid and nuclear data sets; the relationships among these clades, however, are unresolved. These clades are designated as "Mexican", "Eastern USA", "South American", "North American monocotyledonous", "South American monocotyledonous", and "Pacific". Members of each clade share similar geographical distributions and/or morphological or ecological traits. Evidence from branch lengths and low sequence divergence estimates suggests a rapid radiation at the base of each of these lineages. Conflict between chloroplast and nuclear data sets is weak, but the disagreements found are suggestive that hybrid speciation in Eryngium might have been a cause, but also a consequence, of the different rapid radiations observed. Dispersal-vicariance analysis indicates that Eryngium and its two subgenera originated from western Mediterranean ancestors and that the present-day distribution of the genus is explained by several dispersal events, including one trans-Atlantic dispersal. In general, these dispersals coincide with the polytomies observed, suggesting that they played key roles in the diversification of the genus. The evolution of Eryngium combines a history of long distance dispersals, rapid radiations, and hybridization, culminating in the taxonomic complexity observed today in the genus.  相似文献   

12.
Nuclear DNA sequence data for diploid organisms are potentially a rich source of phylogenetic information for disentangling the evolutionary relationships of closely related organisms, but present special phylogenetic problems owing to difficulties arising from heterozygosity and recombination. We analyzed allelic relationships for two nuclear gene regions (phosphoenolpyruvate carboxykinase and elongation factor-1a), along with a mitochondrial gene region (NADH dehydrogenase subunit 5), for an assemblage of closely related species of carabid beetles (Carabus subgenus Ohomopterus). We used a network approach to examine whether the nuclear gene sequences provide substantial phylogenetic information on species relationships and evolutionary history. The mitochondrial gene genealogy strongly contradicted the morphological species boundary as a result of introgression of heterospecific mitochondria. Two nuclear gene regions showed high allelic diversity within species, and this diversity was partially attributable to recombination between various alleles and high variability in the intron region. Shared nuclear alleles among species were rare and were considered to represent shared ancestral polymorphism. Despite the presence of recombination, nuclear allelic networks recovered species monophyly more often and presented genetic differentiation patterns (low to high) among species more clearly. Overall, nuclear gene networks provide clear evidence for separate biological species and information on the phylogenetic relationships among closely related carabid beetles.  相似文献   

13.
The subgenus Chimarrita of the genus Chimarra is erected to include three described species, formerly placed in the subgenus Chimarra , and fifteen new species, all with distributions in the Greater Antilles or South America. A phylogeny for the species in the subgenus, and characters supporting monophyly of the subgenus Chimarrita , are proposed, as well as evidence for the monophyly of the subgenera Chimarra and Curgia . Keys are provided for the males and known females of the subgenus. Described species transferred to this subgenus are Chimarra simpliciforma Flint, Chimarra rosalesi Flint, and Chimarra maldonadoi Flint. Chimarra simpliciforma is designated the type species for the subgenus. New species in Chimarra ( Chimarrita ) described in this paper include: Chimarra akantha (Brazil), C . camella (Brazil), C . camura (Brazil), C . chela (Venezuela), C . forcipata (Venezuela), C . heligma (Brazil), C . heppneri (Peru), C . kontilos (Brazil), C . majuscula (Brazil), C . merengue (Dominican Republic), C . neblina (Venezuela), C . prolata (Ecuador), C . pusilla (Venezuela), C . tortuosa (Brazil), and C . xingu (Brazil).  相似文献   

14.
Several species in the rodent genus Mus are used as model research organisms, but comparative studies of these mice have been hampered by the lack of a well-supported phylogeny. We used DNA sequences from six genes representing paternally, maternally, and biparentally inherited regions of the genome to infer phylogenetic relationships among 10 species of Mus commonly used in laboratory research. Our sample included seven species from the subgenus Mus; one species each from the subgenera Pyromys, Coelomys, and Nannomys; and representatives from three additional murine genera, which served as outgroups in the phylogenetic analyses. Although each of the six genes yielded a unique phylogeny, several clades were supported by four or more gene trees. Nodes that conflicted between trees were generally characterized by weak support for one or both of the alternative topologies, thus providing no compelling evidence that any individual gene, or part of the genome, was misleading with respect to the evolutionary history of these mice. Analysis of the combined data resulted in a fully resolved tree that strongly supports monophyly of the genus Mus, monophyly of the subgenus Mus, division of the subgenus Mus into Palearctic (M. musculus, M. macedonicus, M. spicilegus, and M. spretus) and Asian (M. cervicolor, M. cookii, and M. caroli) clades, monophyly of the house mice (M. m. musculus, "M. m. molossinus," M. m. castaneus, and M. m. domesticus), and a sister-group relationship between M. macedonicus and M. spicilegus. Other clades that were strongly supported by one or more gene partitions were not strongly supported by the combined data. This appears to reflect a localized homoplasy in one partition obscuring the phylogenetic signal from another, rather than differences in gene or genome histories.  相似文献   

15.
In the genealogy of Phlebotomus (Diptera: Psychodidae), morphological analyses have indicated that the subgenus Larroussius is a monophyletic group which is most closely related to the subgenera Transphlebotomus and Adlerius. We conducted a phylogenetic analysis of the relationships among six representative species of the subgenus Larroussius and one species representatitive of the Phlebotomus subgenus, assessing sequences of the Second Internal Transcribed Spacer (ITS2) of the ribosomal RNA (rRNA). Three of the species (P. perniciosus, P. ariasi and P. perfiliewi perfiliewi) were collected in different parts of the Mediterranean area. The trees estimated from parsimony and neighbour-joining analyses supported the monophyly of the Larroussius subgenus inferred from the morphological analysis. According to our data, P. ariasi may be a sister group to the rest of the Larroussius subgenus, although additional sequence data are needed to confirm this observation. Our results suggest that P. perniciosus and P. longicuspis are distinct species, in spite of the fact that there are only slight morphological differences. The strict congruence between the phylogeny of the Larroussius subgenus inferred from the ITS2 sequences and that based on morphological studies further confirmed the ability of the spacer sequence to identify recently-derived affiliations.  相似文献   

16.
A phylogeny of the mosquito subfamily Anophelinae was inferred from fragments of two protein-coding nuclear genes, G6pd (462 bp) and white (801 bp), and from a combined data set (2,136 bp) that included a portion of the mitochondrial gene ND5 and the D2 region of the ribosomal 28S gene. Sixteen species from all three anopheline genera and six Anopheles subgenera were sampled, along with six species of other mosquitoes used as an outgroup. Each of four genes analyzed individually recovered the same well-supported clades; topological incongruence was limited to unsupported or poorly supported nodes. As assessed by the incongruence length difference test, most of the conflicting signal was contributed by third codon positions. Strong structural constraints, as observed in white and G6pd, apparently had little impact on phylogenetic inference. Compared with the other genes, white provided a superior source of phylogenetic information. However, white appears to have experienced accelerated rates of evolution in few lineages, the affinities of which are therefore suspect. In combined analyses, most of the inferred relationship were well-supported and in agreement with previous studies: monophyly of Anophelinae, basal position of Chagasia, monophyly of Anopheles subgenera, and subgenera Nyssorhynchus + Kerteszia as sister taxa. The results suggested also monophyletic origin of subgenera Cellia + Anopheles, and the white gene analysis supported genus Bironella as a sister taxon to Anopheles. The present data and other available evidence suggest a South American origin of Anophelinae, probably in the Mesozoic; a rapid diversification of Bironella and basal subgeneric lineages of Anopheles, potentially associated with the breakup of Gondwanaland; and a relatively recent and rapid dispersion of subgenus Anopheles.  相似文献   

17.
The genus Mus encompasses at least 38 species divided into four subgenera: Mus , Pyromys , Nannomys and Coelomys . The subgenus Mus , which comprises the house mouse and related species, is by far the most extensively studied, although the subgenus Nannomys is the most speciose. Although the relationships within the subgenus Mus are rather well characterized, those between subgenera are still unclear. In the present study, phylogenetic analyses of the whole genus were performed using a larger species sample of Nannomys than in previous studies, and a nuclear gene (IRBP) in addition to mitochondrial data (cytochrome b and 12S rRNA). Members of the Acomyinae and Murinae were used as outgroups. Separate and combined analyses were performed with maximum parsimony, maximum likelihood and Bayesian methods, and divergence times were estimated. The results showed that the monophyly of the genus Mus and of each subgenus was strongly supported by the three genes and the combined analysis. The phylogenies derived from the three genes were on the whole congruent; however, several conflicting topologies were observed such as the relationships between the three Asian species of the subgenus Mus ( caroli , cervicolor and cookii ). Increasing the taxonomic sampling of Nannomys did not satisfactorily improve the resolution of relationships between the four subgenera. In addition, molecular calibrations indicate that the Mus and Nannomys radiation coincided with major environmental changes.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 417–427.  相似文献   

18.
Epidendrum L. is the largest genus of Orchidaceae in the Neotropical region; it has an impressive morphological diversification, which imposes difficulties in delimitation of both infrageneric and interspecific boundaries. In this study, we review infrageneric boundaries within the subgenus Amphiglottium and try to contribute to the understanding of morphological diversification and taxa delimitation within this group. We tested the monophyly of the subgenus Amphiglottium sect. Amphiglottium, expanding previous phylogenetic investigations and reevaluated previous infrageneric classifications proposed. Sequence data from the trnL-trnF region were analyzed with both parsimony and maximum likelihood criteria. AFLP markers were also obtained and analyzed with phylogenetic and principal coordinate analyses. Additionally, we obtained chromosome numbers for representative species within the group. The results strengthen the monophyly of the subgenus Amphiglottium but do not support the current classification system proposed by previous authors. Only section Tuberculata comprises a well-supported monophyletic group, with sections Carinata and Integra not supported. Instead of morphology, biogeographical and ecological patterns are reflected in the phylogenetic signal in this group. This study also confirms the large variability of chromosome numbers for the subgenus Amphiglottium (numbers ranging from 2n = 24 to 2n = 240), suggesting that polyploidy and hybridization are probably important mechanisms of speciation within the group.  相似文献   

19.
Comparative chromosomal analysis is a powerful tool in the investigation of the mechanisms of chromosomal evolution. The accuracy of the analysis depends on the availability of region-specific markers to follow the fate of the particular chromosomal region through the evolution of species. We have assigned 12 unique sequences to the euchromatic part of the vole X chromosome, which serve as reliable markers of chromosomal segments. Together with region-specific libraries and GTG banding, these markers allow us to delineate the homologous regions of the X chromosomes in five species of the genus Microtus. We found that X chromosomes of these species differ by numerous rearrangements and all rearrangements are clustered at specific breakpoints. Moreover, these breakpoints were found to colocalise with repetitive and/or duplicated DNA sequences. We suggest that clusters of repeated and/or duplicated DNA sequences have played a crucial role in the formation of rearrangement hot spots during evolution of the X chromosome in the subgenus Microtus.  相似文献   

20.
Incarvillea is a herbaceous and temperate member of Bignoniaceae, previously divided into four subgenera, Niedzwedzkia, Amphicome, Incarvillea, and Pteroscleris. Niedzwedzkia and Amphicome have in the past been treated as independent genera. Different relationships have been proposed for the four subgenera. Here, maximum parsimony analysis using ITS and trnL-F sequences resulted in similar trees and showed that the genus is monophyletic. Analysis of the combined data resulted in a single tree with five major clades highly supported and well resolved. The relationships of the five major clades are (subgenus Niedzwedzkia (Incarvillea olgae (subgenus Amphicome (subgenus Incarvillea, subgenus Pteroscleris)))). All four subgenera are well supported for monophyly, with the exception of subgenus Incarvillea, represented here by I. sinensis and I. olgae. Incarvillea olgae is not closely related to I. sinensis, a conclusion supported by morphology. The two basal monotypic subgenera are found in Central Asia. The most species-rich subgenus, Pteroscleris, has 10 species in the Himalaya-Hengduan Mountains and may have dispersed early from central Asia to eastern Asia. Short branch lengths on the molecular trees within Pteroscleris suggest a recent and rapid radiation of this rosette-forming subgenus, perhaps connected with the uplift of the Himalaya-Hengduan massif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号