首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Immobilized lipase from Rhizomucor miehei (Lipozyme IM-20) was employed in the esterification of isovaleric acid and isoamyl alcohol to synthesize isoamyl isovalerate in n-heptane. Response surface methodology (RSM) based on a five-level, five-variable central composite rotatable design (CCRD) was used to evaluate the effects of important variables: enzyme concentration (20–40% w/w of acid), acid concentration (0.2–1.0 M), incubation period (24–120 h), alcohol concentration (0.25–1.25 M) and temperature (30–70 °C) on the esterification yield of isoamyl isovalerate. Extent of conversion was found to be excellent at all acid and alcohol concentrations employed in the range of 0.2–1.25 M, even at low enzyme concentration (20% w/w). The optimum conditions arrived at are as follows: 35% (w/w) enzyme concentration, 1.0 M acid concentration, 1.25 M alcohol concentration and 120 h incubation period, at 35 °C. Under these conditions, the predicted value was 680 mM ester matched very well with an experimental value of 678 mM.  相似文献   

2.
The effects of important reaction parameters for enhancing isoamyl acetate formation through lipase-catalyzed esterification of isoamyl alcohol were investigated in this study. Increase in substrate (acid) concentration led to decrease in conversions. A critical enzyme concentration of 3 g l(-1) was detected for a substrate concentration of 0.06 M (each of alcohol and acid). Solvents with partition coefficient higher than 1000 (log P>3.0) supported enzyme activity to give high conversions. Acetic acid at higher concentrations could not be esterified easily probably owing to its role in lowering the microaqueous pH of the enzyme. Extraneous water/buffer addition decreased the isoamyl acetate yields slightly ( approximately 10%) at 0.005-0.01% v/v of the reaction mixture and drastically (>40%) at above 0.01% v/v. Buffer saturation of the organic solvent employed improved esterification (upto two-fold), particularly at moderately higher substrate concentrations (>0.18 M). Employing acetic anhydride instead of acetic acid resulted in a two-fold increase in the yields (at 0.25 M substrate). Use of excess nucleophile (alcohol) concentration by increasing the alcohol/acid molar ratio resulted in higher conversions in shorter duration (upto eight-fold even at 1.5 M acetic acid). Yields above 80% were achieved with substrate concentrations as high as 1.5 M and more than 150 g l(-1) isoamyl acetate concentrations were obtained employing a relatively low enzyme concentration of 10 g l(-1). The operational stability of lipase was also observed to be reasonably high enabling ten reuses of the biocatalyst.  相似文献   

3.
Enzymatic synthesis of esters using an immobilized lipase   总被引:6,自引:0,他引:6  
Various esters were synthesized in nearly anhydrous hexane from alcohols and carboxylic acids using a lipase from Candida cylindracea. The enzyme was immobilized on a nylon support and protein loadings as high as 10 mg/g were obtained. The activity of the immobilized enzyme was maximum in a range of temperatures from 25 to 37 degrees C. Ethylpropionate was formed from ethanol and propionic acid at a rate of 0.017 mol/h g immobilized protein. Different esters were formed at comparable rates and equilibrium conversions could generally be approached in less than 10 h in a batch reaction system. The immobilized lipase catalyst was quite stable and retained about one third of the initial activity after repeated experiments during the course of 72 days. A stirred tank continuous flow reactor was used successfully for the continuous production of esters.  相似文献   

4.
《Process Biochemistry》2014,49(8):1297-1303
The present work illustrates the incorporation of ultrasound and its improved impact in the lipase catalysed esterification. Synthesis of isoamyl butyrate from isoamyl alcohol and butyric acid using immobilised Novozym 435, has been carried out in the presence of ultrasound. The optimisation of various parameters affecting the synthesis of ester in presence of ultrasound was done. The systematic experimentation involves change of one working parameter at one time while keeping the others constant. For the maximum conversion, optimum parameters such as the ultrasound of 25 kHz frequency with power of 70 W, at the temperature of 60 °C with stirring speed of 80 rpm, mole ratio of alcohol:acid followed as 2:1, use of molecular sieves weighing 2 g, with immobilised enzyme loading of 2% (m/v) and duty cycle of 83%, were obtained. The optimum parameters collectively, gave 96% conversion of the product in 3 h as compared with 10 h in absence of ultrasound. The immobilised biocatalyst, Novozym 435 has an added benefit of reusability till 7 repetitive cycles. Besides, the synthesis is executed in the solvent free system that contributes the production of flavour in greener way.  相似文献   

5.
Humicola lanuginosa lipase (HIL) and Rhizomucor miehei lipase (RrnL), isolated from commercial preparations of Lipolase and Lipozyme, respectively, were solubilized in AOT-stabilized water-in-oil (w/o) microemulsions in n-heptane and aspects of their hydrolysis and condensation activity examined. The temperature dependence of HIL hydrolysis activity in unbuffered R = 10 microemulsions matched very closely that for tributyrin hydrolysis by Lipolase in an aqueous emulsion assay. Apparent activation energies were measured as 13 +/- 2 and 15 +/- 2 kJ mol / respectively. Condensation activity, however, was essentially independent of temperature over the range 5 degrees to 37 degrees C. The stability of HIL over a 30-day period was very good at all pH levels (6.1, 7.2, 9.3) and R values studied (5, 7.5, 10, 20), except when high pHs and low R values were combined. The excellent stability was reflected by the linearity of the productivity profiles which facilitate system optimization. The temperature dependence of RmL hydrolysis activity toward pNPC(4) showed a maximum at 40 degrees C and an apparent E(act) = 20 +/- 2 kJ mol(-1) was calculated based on the linear region of the profile (5 degrees to 40 degrees C). RmL esterification activity showed only a slight dependence on temperature over the studied range (0 degrees to 40 degrees C) and an apparent E(act) = 5 +/- 1 kJ mol(-1) was measured for octyl decanoate synthesis. Both RmL and HIL, therefore, have potential for application in low temperature biotransformations in microemulsion-based media. The stability of RmL over a 30-day period was good in R = 7.5 and R = 10 microemulsions containing pH 6.1 buffer, and this was reflected in the linearity of their respective productivity profiles. RmL stability was markedly poorer at more alkaline pH, however, and proved to be sensitive to relatively small changes in the R value. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
Butyl butyrate is an ester present in pineapple flavor, which is very important for the food and beverages industries. In this work, the optimization of the reaction of butyl butyrate synthesis catalyzed by the immobilized lipase Lipozyme TL‐IM was performed. n‐Hexane was selected as the most appropriate solvent. Other reaction parameters such as temperature, substrate molar ratio, biocatalyst content and added water, and their responses measured as yield, were evaluated using a fractional factorial design, followed by a central composite design (CCD) and response surface methodology. In the fractional design 24–1, the four variables were tested and temperature and biocatalyst content were statistically significant and then used for optimization on CCD. The optimal conditions for butyl butyrate synthesis were found to be 48°C; substrate molar ratio 3:1 (butanol:butyric acid); biocatalyst content of 40% of acid mass. Under these conditions, over 90% of yield was obtained in 2 h. Enzyme reuse was tested by washing the biocatalyst with n‐hexane or by direct reuse. The direct reuse produced a rapid decrease on enzyme activity, while washing with n‐hexane allowed reusing the enzyme for five reactions cycles keeping approximately 85% of its activity. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1416–1421, 2013  相似文献   

7.
Lipolase and Lipozyme are produced in large quantities (as a result of genetic engineering and overexpression) for the detergents market and provide a cheap source of highly active biocatalysts. Humicola lanuginosa lipase (HIL) and Rhizomucor miehei lipase (RmL) have been isolated in partially purified form from commercial preparations of Lipolase and Lipozyme, respectively. These lipases were solubilized in Aerosol-OT (AOT)-stabilized water-in-oil (w/o) microemulsions in n-heptane. HIL and RmL activity in these microemulsions was assayed by spectrophotometric measurement of the initial rate of p-nitophenyl butyrate hydrolysis, and by chromatographic determination of the initial rate of octyl decanoate synthesis from 1-octanol and decanoic acid. The hydrolytic activity of HIL in microemulsions measured as a function of buffer pH prior to dispersal, followed a sigmoidal profile with the highest activities observed at alkaline pHs. This broadly matches the pH-activity profile for tributyrin hydrolysis by Lipolase in an aqueous emulsion assay. The hydrolytic activity of RmL in the same microemulsions, measured as a function of pH, gave a bell-shaped profile with a maximum activity at pH 7.5. Again, the observed pH-activity profile was similar to that reported for a purified RmL in a tributyrin-based aqueous emulsion assay. In contrast, the esterification activity exhibited by both HIL and RmL in AOT microemulsions over the available range pH 6.1 to 10.4, decreases as the pH increases, most likely reflecting the effect of substrate ionization. The dependence of the hydrolytic and condensation activity of HIL on R, the mole ratio of water to surfactant, were similar with both profiles exhibiting a maximum at R = 5. The hydrolytic and esterification activities of RmL followed similar R-dependent profiles, but the profiles in this case exhibited a maximum at R = 10. The water activities at these R values were directly measured as 0.78 and 0.9, respectively. Measured water activities were unperturbed by the presence of lipase at the concentrations used in these studies. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
For the commercial exploitation of lipase biocatalysis to be successful, it is essential that effective supports are selected for lipase immobilization. In this study hydrophobic controlled-pore glasses have been used as model systems for the immobilization of Rhizomucor miehei lipase. The effect of pore diameter and surface chemistry on enzyme efficiency in a typical esterification reaction under essentially nonaqueous conditions has been examined. It has been found that pore diameters of at least 35 nm are needed for the lipase to be able to utilize the internal volume of the support particles in the immobilization process. Despite the small size of the substrates in the esterification reaction, even larger pores (>100 nm) are required for the lipase efficiency to become independent of pore diameter; below 100 nm lipase activity and efficiency are markedly reduced. It has also been shown that the chemical nature of the hydrophobic surface plays an important part in catalyst design. Although lipase will adsorb readily to a wide range of hydrophobic groups, the highest catalyst activities are obtained when the glass surface is derivatized to give long alkyl chains; the presence of unsaturated derivatives gonerally leads to a reduction in activity. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
This research describes the immobilization of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML) on different supports including octyl-sepharose (octyl-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML), glyoxyl sepharose (Gx-RML and Gx-NH2-RML) and glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML). The highest immobilization yield was achieved for octyl-RML (>98%) followed by CNBr-RML (88%). Octyl-RML had the most specific activity (13.6) among all derivatives. The other preparations had moderate activities likely because of chemical reaction during covalent attachment of the enzyme. The catalytic behavior of lipase immobilized in hydrolysis reactions was investigated using methyl, ethyl, propyl, butyl and isobutyl-ibuprofen esters and the influence of the alkyl chain and the alcoholic residue of the ester were studied. Butyl ester was the most interesting ester for carrying out hydrolysis. The highest enantioselectivity of enzyme (E = 8.8) was obtained with isooctane/sodium phosphate buffer pH 7.0 at temperature of 40 °C. Increasing temperature from 40 to 50 °C caused decreasing in enantioselectivities and conversions. Also esterification of ibuprofen was carried out in solvent systems containing isooctane and two ionic liquids (ILs); [BMIM][PF6] and [BMIM][BF4]. Poor conversions and enantioselectivities were observed during esterification in all solvents.  相似文献   

10.
Octyl oleate is a useful organic compound with several applications in cosmetic, lubricant and pharmaceutical industry. At first, the enzymatic synthesis of n-octyl oleate by direct lipase-catalysed esterification of oleic acid and 1-octanol was investigated in a stirred batch reactor in solvent-free system. A systematic screening and optimisation of the reaction parameters were performed to gain insight into the kinetics mechanism. Particularly, enzyme concentration, reaction temperature, stirrer speed, water content, substrates concentration and molar ratio were optimised with respect to the final product concentration and reaction rate. The kinetics mechanism of the reaction was investigated. Finally, a comparison of the experimental results obtained in a solvent free-system with those using two different solvents, supercritical carbon dioxide (SC-CO2) and n-hexane, was proposed. It resulted that in SC-CO2 higher concentration of the desired product was attained, requiring lower enzyme concentrations to achieve comparable conversion of free fatty acid into fatty acid ester.  相似文献   

11.
Twenty-one different organic solvents were assayed as possible reaction media for the synthesis of butyryl esters from trimethylammonium alcohols in dry conditions catalyzed by immobilized Candida antarctica lipase B. The reactions were carried out following a transesterification kinetic approach, using choline and L-carnitine as primary and secondary trimethylammonium alcohols, respectively, and vinyl butyrate as acyl donor. The synthetic activity of the enzyme was strictly dependent on the water content, the position of the hydroxyl group in the trimethylammonium molecule, and the Log P parameter of the assayed solvent. Anhydrous conditions and a high excess of vinyl butyrate over L-carnitine were necessary to synthesize butyryl-L-carnitine. The synthetic reaction rates of butyryl choline were practically 100-fold those of butyryl-L-carnitine with all the assayed solvents. In both cases, the synthetic activity of the enzyme was dependent on the hydrophobicity of the solvent, with the optimal reaction media showing a Log P parameter of between -0.5 and 0.5. In all cases, 2-methyl-2-propanol and 2-methyl-2-butanol were shown to be the best solvents for both their high synthetic activity and negligible loss of enzyme activity after 6 days.  相似文献   

12.
We have developed the methodology for the esterification of an acid with an epoxide using 2-chlorobutyric acid and 1,2-epoxy-5-hexene catalysed by a Mucor miehei-immobilized lipase. Thus, this methodology could be applied to obtain 2-chloroesters. A factorial design of experiments and a central composite design have been used to optimise the synthesis of these esters. The variables chosen were temperature and initial catalyst concentration, while the responses were yield and isomeric excess of the ester. According to this study, temperature was the most important factor, having a positive influence on the yield and a small negative influence on the isomeric excess of the ester. The yield and isomeric excess of the ester show a greater dependence on temperature compared to the catalyst concentration. Although the effect of the catalyst concentration on both responses is smaller than the temperature effect, the higher selectivity presented by the biocatalyst towards the studied ester considerably decreased the final product distribution. Journal of Industrial Microbiology & Biotechnology (2002) 28, 173–179 DOI: 10.1038/sj/jim/7000218 Received 27 June 2001/ Accepted in revised form 25 October 2001  相似文献   

13.
The chain length specificity of Rhizomucor miehei lipase was altered by substituting Phe94 in the protein groove which is responsible for accommodating the acyl chain of the substrate. Three recombinant enzymes, Phe94Arg, Phe94Glu and Phe94Gln, were expressed in Pichia pastoris, purified and their ability to hydrolyse p-nitrophenyl esters and triacylglycerols of different chain length was studied.  相似文献   

14.
The initial activity rate for the synthesis of geranyl butyrate by an esterase from Mucor miehei increased with increasing water activity and decreased above 0.5 water activity. The conversion yield after 75 h was about 75% for different, but low, initial water activities and decreased above 0.5 water activity. This behaviour is related to water-enzyme interactions.  相似文献   

15.
Several surfactant-coated enzymes have been prepared by coating lipases of various origins with a nonionic surfactant, glutamic acid dioleylester ribitol (2C(18)Delta(9)GE). Enzymatic interesterification of tripalmitin with oleic acid using the surfactant-coated lipase was carried out in organic media. The surfactant-coated lipases could effectively catalyze the interesterification of glycerides better than did the powder lipases. A suitable organic solvent was an aliphatic hydrocarbon such as isooctane. The enzymatic activity for the interesterification strongly depended on the origin of the lipase. The surfactant-coated lipase prepared by Mucor javanicus showed the highest enzymatic activity for the interesterification of glycerides, although its powder lipase did not show enzymatic activity. Selective interesterification of glycerides could be performed by adjusting the concentration ratio of oleic acid to tripalmitin in isooctane. Di-substituted glyceride could be selectively produced when the concentration ratio of carboxylic acid to glycerides was 7. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
2-Phenyl propionic acid, ibuprofen and trans-2-phenyl-1-cyclohexanol were resolved using commercial Rhizomucor miehei lipase (Lipozyme IM20) and Candida rugosa lipase produced in our laboratory immobilised on EP100 polypropylene powder. Important differences were found on the enantioselectivity of both lipases in esterification reactions. Candida rugosa lipase was more enantioselective in the resolution of the tested substrates, especially with trans-2-phenyl-1-cyclohexanol, whereas the lipase from Rhizomucor miehei did not show catalytic activity with this substrate. © Rapid Science Ltd. 1998  相似文献   

17.
18.
The effect of solvents and solvent mixtures on the synthesis of myristic acid esters of different carbohydrates with an immobilized lipase from C. antarctica was investigated. The rate of myristyl glucose synthesized by the enzyme was increased from 3.7 to 20.2 micromol min(-1) g(-1) by changing the solvent from pure tert-butanol to a mixture of tert-butanol:pyridine (55:45 v/v), by increasing the temperature from 45 degrees C to 60 degrees C, and by optimizing the relative amounts of glucose, myristic acid, and the enzyme preparation. Addition of more than 2% DMSO to the tert-butanol:pyridine system resulted in a reduction of enzyme activity. Lowering the water content of the enzyme preparation below 0.85% (w/w) resulted in significant decreases in enzyme activity, while increasing the water content up to 2.17% (w/w) did not significantly affect the enzyme activity. The highest yields of myristyl glucose were obtained when an excess of unsolubilized glucose was present in the reaction system. In this case, all of the initially solubilized and a significant amount of the initially unsolubilized glucose was converted to the ester within 24 h of incubation, resulting in a myristyl glucose concentration of 34 mg/mL(-1). Myristic acid esters of fructose (22.3 micromol min(-1) g(-1)), alpha-D-methyl-glucopyranoside (26.9 micromol min(-1) g(-1)) and maltose (1.9 micromol min(-1) g(-1)) could also be prepared using the tert-butanol:pyridine solvent system. No synthesis activity was observed with maltotriose, cellobiose, sucrose, and lactose as substrate.  相似文献   

19.
The influence of the thermodynamic activity of water (a(w))on the synthesis of triolein catalyzed by Mucor miehei lipase was investigated. Its effect on the equilibrium and on the rates of the different reactions present, esteification and mono- and diglyceride isomerization, was evaluated through measurements made in controlled water activity atmosphere. The apparent equilibrium constants were measured from the concentration of the different species as a function of the intial glycerol-to oleic-acid ratio using all the values at once with a multi-response nonlinear regression technique. Rate constants were determined from kinetic measurements and non-linear regression uning the variation of the concentration of all significant species in the system. Except for the synthesis of diolein from monoolein, which shows a maximum for a(w) approximately 0.5, the apparent rate constants of the various reactions are not significantly affected by the value of the water activity. The equilibrium is shifted to-ward the synthesis of triolein for low values of a(w), indicating that in the design of a process for triglyceride synthesis, using M. miehei lipase as a catalyst, the water activity can be lowered to extreme values to favor the synthesis, without any sacrifice on the productivity of the process. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
The aim of this study is to characterize, in solvent-free systems (SFS), the kinetic and thermodynamic performance of batch lipase-catalyzed esterification. SFS are compared to a conventional organic solvent, n-hexane. The esterification of oleic acid with ethanol was chosen as a model reaction. The TABEK (thermodynamic activity-based enzyme kinetics) approach was used to rationally analyze kinetics. Influence of the reaction medium on final conversions was also studied. Several factors, such as initial molar ratio of substrates, reactant availability, initial water content, and quantity of immobilized enzyme, were examined. Special attention was also turned to enzyme stability and reuse after reaction, this last item being a prerequisite in the development of industrial processes. SFS proved to be almost as efficient as n-hexane from a kinetic and thermodynamic point of view and offered a better volumetric production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号