首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two groups of plant chromatin-associated high mobility group (HMG) proteins, namely the HMGA family, typically containing four A/T-hook DNA-binding motifs, and the HMGB family, containing a single HMG-box DNA-binding domain, have been identified. We have examined the interaction of recombinant maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA in the presence of H1 differed from that observed in the absence of H1. HMGA and the HMGB proteins bound H1-containing nucleosome particles with similar affinity. The plant HMG proteins could also bind nucleosomes that were briefly treated with trypsin (removing the N-terminal domains of the core histones), suggesting that the histone N-termini are dispensable for HMG protein binding. In the presence of untreated nucleosomes and trypsinised nucleosomes, HMGB1 could be chemically crosslinked with a core histone, which indicates that the trypsin-resistant part of the histones within the nucleosome is the main interaction partner of HMGB1 rather than the histone N-termini. In conclusion, these results indicate that specific nucleosome binding of the plant HMGB proteins requires simultaneous DNA and histone contacts.  相似文献   

2.
3.
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently   总被引:4,自引:0,他引:4  
We analyzed the DNA-binding and DNA-bending properties of recombinant HMGB1 proteins based on a rice HMGB1 cDNA. Electrophoretic mobility shift assay demonstrated that rice HMGB1 can bind synthetic four-way junction (4H) DNA and DNA minicircles efficiently but the binding to 4H can be completed out by HMGA and histone H1. Conformational changes were detected by circular dichroism analysis with 4H DNA bound to various concentrations of HMGB1 or its truncated forms. T4 ligase-mediated circularization assays with short DNA fragments of 123 bp showed that the protein is capable of increasing DNA flexibility. The 123-bp DNA formed closed circular monomers efficiently in its presence, similar to that in an earlier study on maize HMG. Additionally, our results show for the first time that the basic N-terminal domain enhances the affinity of the plant HMGB1 protein for 4H DNA, while the acidic C-terminal domain has the converse effects.  相似文献   

4.
Plant high-mobility-group (HMG) chromosomal proteins are the most abundant and ubiquitous nonhistone proteins found in the nuclei of higher eukaryotes. There are only two families of HMG proteins, namely, HMGA and HMGB in plants. The cDNA encoding wheat HMGa protein was isolated and characterized. Wheat HMGA cDNA encodes a protein of 189 amino acid residues. At its N terminus, there is a histone H1-like structure, which is a common feature of plant HMGA proteins, followed by four AT-hook motifs. Polymerase chain reaction results show that the gene contains a single intron of 134 bp. All four AT-hook motifs are encoded by the second exon. Northern blot results show that the expression of HMGA gene is much higher in organs undergoing active cell proliferation. Gel retardation analysis show that wheat HMGa, b, c and histone H1 bind to four-way-junction DNA with high binding affinity, but affinity is dramatically reduced with increasing Mg(2+) and Na(+) ion concentration. Competition binding studies show that proteins share overlapping binding sites on four-way-junction DNA. HMGd does not bind to four-way-junction DNA.  相似文献   

5.
High mobility group proteins and their post-translational modifications   总被引:1,自引:0,他引:1  
The high mobility group (HMG) proteins, including HMGA, HMGB and HMGN, are abundant and ubiquitous nuclear proteins that bind to DNA, nucleosome and other multi-protein complexes in a dynamic and reversible fashion to regulate DNA processing in the context of chromatin. All HMG proteins, like histone proteins, are subjected to extensive post-translational modifications (PTMs), such as lysine acetylation, arginine/lysine methylation and serine/threonine phosphorylation, to modulate their interactions with DNA and other proteins. There is a growing appreciation for the complex relationship between the PTMs of HMG proteins and their diverse biological activities. Here, we reviewed the identified covalent modifications of HMG proteins, and highlighted how these PTMs affect the functions of HMG proteins in a variety of cellular processes.  相似文献   

6.
There is evidence that HMGB proteins facilitate, while linker histones inhibit chromatin remodelling, respectively. We have examined the effects of HMG-D and histone H1/H5 on accessibility of nucleosomal DNA. Using the 601.2 nucleosome positioning sequence designed by Widom and colleagues we assembled nucleosomes in vitro and probed DNA accessibility with restriction enzymes in the presence or absence of HMG-D and histone H1/H5. For HMG-D our results show increased digestion at two spatially adjacent sites, the dyad and one terminus of nucleosomal DNA. Elsewhere varying degrees of protection from digestion were observed. The C-terminal acidic tail of HMG-D is essential for this pattern of accessibility. Neither the HMG domain by itself nor in combination with the adjacent basic region is sufficient. Histone H1/H5 binding produces two sites of increased digestion on opposite faces of the nucleosome and decreased digestion at all other sites. Our results provide the first evidence of local changes in the accessibility of nucleosomal DNA upon separate interaction with two linker binding proteins.  相似文献   

7.
H1 and HMGB1 bind to linker DNA in chromatin, in the vicinity of the nucleosome dyad. They appear to have opposing effects on the nucleosome, H1 stabilising it by "sealing" two turns of DNA around the octamer, and HMGB1 destabilising it, probably by bending the adjacent DNA. Their presence in chromatin might be mutually exclusive. Displacement/replacement of one by the other as a result of their highly dynamic binding in vivo might, in principle, involve interactions between them. Chemical cross-linking and gel-filtration show that a 1:1 linker histone/HMGB1 complex is formed, which persists at physiological ionic strength, and that complex formation requires the acidic tail of HMGB1. NMR spectroscopy shows that the linker histone binds, predominantly through its basic C-terminal domain, to the acidic tail of HMGB1, thereby disrupting the interaction of the tail with the DNA-binding faces of the HMG boxes. A potential consequence of this interaction is enhanced DNA binding by HMGB1, and concomitantly lowered affinity of H1 for DNA. In a chromatin context, this might facilitate displacement of H1 by HMGB1.  相似文献   

8.
HMGB proteins and gene expression   总被引:20,自引:0,他引:20  
  相似文献   

9.
10.
11.
Loss of linker histone H1 in cellular senescence   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

12.
13.
14.
Recent studies indicate that most nuclear proteins, including histone H1 and HMG are highly mobile and their interaction with chromatin is transient. These findings suggest that the structure of chromatin is dynamic and the protein composition at any particular chromatin site is not fixed. Here we discuss how the dynamic behavior of the nucleosome binding HMGN proteins affects the structure and function of chromatin. The high intranuclear mobility of HMGN insures adequate supply of protein throughout the nucleus and serves to target these proteins to their binding sites. Transient interactions of the proteins with nucleosomes destabilize the higher order chromatin, enhance the access to nucleosomal DNA, and impart flexibility to the chromatin fiber. While roaming the nucleus, the HMGN proteins encounter binding partners and form metastable multiprotein complexes, which modulate their chromatin interactions. Studies with HMGN proteins underscore the important role of protein dynamics in chromatin function.  相似文献   

15.
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double‐stranded DNA‐binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N‐terminus, a central H1/H5‐like domain and a C‐terminally located coiled‐coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double‐stranded DNA in vitro, while the central H1/H5‐like domain interacts non‐specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5‐like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle‐regulated, as the level of nuclear‐associated GFP diminishes during mitotic entry and GFP progressively re‐associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell‐cycle progression, with the other involving rapid exchange.  相似文献   

16.
Binding of proteins to DNA is usually considered 1D with one protein bound to one DNA molecule. In principle, proteins with multiple DNA binding domains could also bind to and thereby cross-link different DNA molecules. We have investigated this possibility using high-mobility group A1 (HMGA1) proteins, which are architectural elements of chromatin and are involved in the regulation of multiple DNA-dependent processes. Using direct stochastic optical reconstruction microscopy (dSTORM), we could show that overexpression of HMGA1a-eGFP in Cos-7 cells leads to chromatin aggregation. To investigate if HMGA1a is directly responsible for this chromatin compaction we developed a DNA cross-linking assay. We were able to show for the first time that HMGA1a can cross-link DNA directly. Detailed analysis using point mutated proteins revealed a novel DNA cross-linking domain. Electron microscopy indicates that HMGA1 proteins are able to create DNA loops and supercoils in linearized DNA confirming the cross-linking ability of HMGA1a. This capacity has profound implications for the spatial organization of DNA in the cell nucleus and suggests cross-linking activities for additional nuclear proteins.  相似文献   

17.
18.
高迁移率族蛋白与真核基因表达调控   总被引:12,自引:0,他引:12       下载免费PDF全文
高迁移率族蛋白 (high mobility group protein , HMG) 是一系列的染色质相关蛋白,广泛存在于真核生物细胞中,含量丰富,因其在聚丙烯酰胺凝胶电泳中的高迁移率而得名 . HMG 蛋白家族可分为 HMGB 、 HMGA 和 HMGN 三类亚家族,各亚家族有其特征的结构域,这些结构域介导了 HMG 和 DNA 或染色质相关区域的相互作用 . 现已发现这些蛋白质具有多种重要生物学功能,其中几乎所有 HMG 都可以通过修饰、弯曲或改变染色质 /DNA 的结构,促进各种蛋白质因子形成大分子复合物来调节基因转录 .  相似文献   

19.
Role of high mobility group (HMG) chromatin proteins in DNA repair   总被引:6,自引:0,他引:6  
Reeves R  Adair JE 《DNA Repair》2005,4(8):926-938
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号