首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Src homology (SH) 3 domain has been shown recently to bind peptide sequences that lack the canonical PXXP motif. The diverse specificity in ligand recognition for a group of 15 SH3 domains has now been investigated using arrays of peptides derived from the proline-rich region of the SH2 domain-containing leukocyte protein of 76 kDa (SLP-76). A screen of the peptide arrays using individual or mixed SH3 domains has allowed the identification of a number of candidate SH3-binding peptides. Although some peptides contain the conventional PXXP motif, most are devoid of such a motif and are instead enriched in basic residues. Fluorescent polarization measurements using soluble peptides and purified SH3 domains demonstrated that several SH3 domains, including those from growth factor receptor-bound protein 2 (Grb2), NCK, and phospholipase C (PLC)-gamma1, bound with moderate affinities (10-100 microm) to a group of non-conventional peptides. Of particular interest, the PLC-gamma1 SH3 domain was found to associate with SLP-76 through at least three distinct sites, two of which bore a novel KKPP motif and the other contained the classic PXXP sequence. Intriguingly mutation of critical residues for the three sites not only affected binding of SLP-76 to the PLC-gamma1 SH3 domain but also to the Grb2 C-terminal SH3 domain, indicating that the binding sites in SLP-76 for the two SH3 domains are overlapped. Our studies suggest that the SH3 domain is an inherently promiscuous interaction module capable of binding to peptides that may or may not contain a PXXP motif. Furthermore the identification of numerous non-conventional SH3-binding peptides in SLP-76 implies that the global ligand pool for SH3 domains in a mammalian proteome may be significantly greater than previously acknowledged.  相似文献   

2.
Although some exceptional motifs have been identified, it is well known that the PXXP motif is the motif of ligand proteins generally recognized by the Src homology 3 (SH3) domain. SH3-ligand interactions are usually weak, with ordinary KD approximately 10 microM. The structural basis for a tight and specific association (KD = 0.24 microm) between Gads SH3 and a novel motif, PX(V/I)(D/N)RXXKP, was revealed in a previous structural analysis of the complex formed between them. In this paper, we report the crystal structure of the signal transducing adaptor molecule-2 (STAM2) SH3 domain in complex with a peptide with a novel motif derived from a ligand protein, UBPY. The derived KD value for this complex is 27 microM. The notable difference in affinity for these parallel complexes may be explained because the STAM2 SH3 structure does not provide a specificity pocket for binding, whereas the Gads SH3 structure does. Instead, the structure of STAM2 SH3 is analogous to that of Grb2 SH3 which, in addition to normal PXXP ligands, has also been shown to moderately recognize the novel motif discussed herein. Thus, the extremely tight interaction observed between Gads SH3 and the novel motif is caused not by an innate ability of the novel motif but rather by an evolutionary change in the Gads SH3 domain. Instead, SH3 domains of STAM2 and Grb2 retain the moderate characteristics of recognizing their ligand proteins like other SH3 domains for appropriate transient interactions between signaling molecules.  相似文献   

3.
The domain organization of Acanthamoeba myosin-I, an oligomodular motor protein, includes a potentially important protein interaction module that is mostly uncharacterized. The Src homology 3, SH3, domain of myosin-I binds Acan125, a protein containing at least two consensus ligand binding domains: C-terminal SH3 binding motifs (PXXP) and N-terminal leucine-rich repeats. We report the first affinities determined for an SH3 domain of any myosin, namely, K(d) = 7 microM for a 21-residue synthetic peptide based on the PXXP domain sequence and K(d) = 0.15 microM for the PXXP domain included in the C-terminus of Acan125. These values are consistent with affinities reported for peptides and proteins that associate with SH3. By deletional analysis we show that only the PXXP domain is required for Acan125 to interact with the SH3 domain of Acanthamoeba myosin-IC (AmyoC(SH3)). The synthetic peptide described above at a concentration near the K(d) for SH3 binding blocked the interaction between native AmyoC and Acan125, mapping the interaction to the PXXP domain of Acan125 and the SH3 domain of myosin-I. These results are consistent with prototypical SH3 binding and suggest that a PXXP module is both necessary and sufficient to interact with an SH3 module of myosin-I.  相似文献   

4.
Grb7, Grb10, and Grb14 are members of a distinct family of adapter proteins that interact with various receptor tyrosine kinases upon receptor activation. Proteins in this family contain several modular signaling domains including a pleckstrin homology (PH) domain, a BPS (between PH and SH2) domain, and a C-terminal Src homology 2 (SH2) domain. Although SH2 domains are typically monomeric, we show that the Grb10 SH2 domain and also full-length Grb10 gamma are dimeric in solution under physiologic conditions. The crystal structure of the Grb10 SH2 domain at 1.65-A resolution reveals a non-covalent dimer whose interface comprises residues within and flanking the C-terminal alpha helix, which are conserved in the Grb7/Grb10/Grb14 family but not in other SH2 domains. Val-522 in the BG loop (BG3) and Asp-500 in the EF loop (EF1) are positioned to interfere with the binding of the P+3 residue of a phosphopeptide ligand. These structural features of the Grb10 SH2 domain will favor binding of dimeric, turn-containing phosphotyrosine sequences, such as the phosphorylated activation loops in the two beta subunits of the insulin and insulin-like growth factor-1 receptors. Moreover, the structure suggests the mechanism by which the Grb7 SH2 domain binds selectively to pTyr-1139 (pYVNQ) in Her2, which along with Grb7 is co-amplified in human breast cancers.  相似文献   

5.
Adapter proteins such as Grb2 play a central role in the formation of signaling complexes through their association with multiple protein binding partners. These interactions are mediated by specialized domains such as the well-characterized Src homology SH2 and SH3 motifs. Using yeast three-hybrid technology, we have identified a novel adapter protein, expressed predominantly in T lymphocytes, that associates with the activated form of the costimulatory receptor, CD28. The protein is a member of the Grb2 family of adapter proteins and contains an SH3-SH2-SH3 domain structure. A unique glutamine/proline-rich domain (insert domain) of unknown function is situated between the SH2 and N-terminal SH3 domains. We term this protein GRID for Grb2-related protein with insert domain. GRID coimmunoprecipitates with CD28 from Jurkat cell lysates following activation of CD28. Using mutants of CD28 and GRID, we demonstrate that interaction between the proteins is dependent on phosphorylation of CD28 at tyrosine 173 and integrity of the GRID SH2 domain, although there are also subsidiary stabilizing contacts between the PXXP motifs of CD28 and the GRID C-terminal SH3 domain. In addition to CD28, GRID interacts with a number of other T cell signaling proteins, including SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa), p62dok, and RACK-1 (receptor for activated protein kinase C-1). These findings suggest that GRID functions as an adapter protein in the CD28-mediated costimulatory pathway in T cells.  相似文献   

6.
Microtubule-associated protein 2 (MAP2) and tau, which is involved in Alzheimer's disease, are major cytoskeletal proteins in neurons. These proteins are involved in microtubule assembly and stability. To further characterize MAP2, we took a strategy of identifying potential MAP2 binding partners. The low molecular weight MAP2c protein has 11 PXXP motifs that are conserved across species, and these PXXP motifs could be potential ligands for Src homology 3 (SH3) domains. We tested for MAP2 interaction with SH3 domain-containing proteins. All neuronal MAP2 isoforms bound specifically to the SH3 domains of c-Src and Grb2 in an in vitro glutathione S-transferase-SH3 pull-down assay. Interactions between endogenous proteins were confirmed by co-immunoprecipitation using brain lysate. All three proteins were also found co-expressed in neuronal cell bodies and dendrites. Surprisingly, the SH3 domain-binding site was mapped to the microtubule-binding domain that contains no PXXP motif. Src bound primarily the soluble, non-microtubule-associated MAP2c in vitro. This specific MAP2/SH3 domain interaction was inhibited by phosphorylation of MAP2c by the mitogen-activated protein kinase extracellular signal-regulated kinase 2 but not by protein kinase A. This phosphorylation-regulated association of MAP2 with proteins of intracellular signal transduction pathways suggests a possible link between cellular signaling and neuronal cytoskeleton, with MAP2 perhaps acting as a molecular scaffold upon which cytoskeleton-modifying proteins assemble and dissociate in response to neuronal activity.  相似文献   

7.
The amphiphysins are brain-enriched proteins, implicated in clathrin-mediated endocytosis, that interact with dynamin through their SH3 domains. To elucidate the nature of this interaction, we have solved the crystal structure of the amphiphysin-2 (Amph2) SH3 domain to 2.2 A. The structure possesses several notable features, including an extensive patch of negative electrostatic potential covering a large portion of its dynamin binding site. This patch accounts for the specific requirement of amphiphysin for two arginines in the proline-rich binding motif to which it binds on dynamin. We demonstrate that the interaction of dynamin with amphiphysin SH3 domains, unlike that with SH3 domains of Grb2 or spectrin, prevents dynamin self-assembly into rings. Deletion of a unique insert in the n-Src loop of Amph2 SH3, a loop adjacent to the dynamin binding site, significantly reduces this effect. Conversely, replacing the n-Src loop of the N-terminal SH3 domain of Grb2 with that of Amph2 causes it to favour dynamin ring disassembly. Transferrin uptake assays show that shortening the n-Src loop of Amph2 SH3 reduces the ability of this domain to inhibit endocytosis in vivo. Our data suggest that amphiphysin SH3 domains are important regulators of the multimerization cycle of dynamin in endocytosis.  相似文献   

8.
Stein EG  Gustafson TA  Hubbard SR 《FEBS letters》2001,493(2-3):106-111
Grb7, Grb10 and Grb14 comprise a family of adaptor proteins that interact with numerous receptor tyrosine kinases upon receptor activation. Between the pleckstrin homology (PH) domain and the Src homology 2 (SH2) domain of these proteins is a region of approximately 50 residues known as the BPS (between PH and SH2) domain. Here we show, using purified recombinant proteins, that the BPS domain of Grb10 directly inhibits substrate phosphorylation by the activated tyrosine kinase domains of the insulin receptor and the insulin-like growth factor 1 (IGF1) receptor. Although inhibition by the BPS domain is dependent on tyrosine phosphorylation of the kinase activation loop, peptide competition experiments indicate that the BPS domain does not bind directly to phosphotyrosine. These studies provide a molecular mechanism by which Grb10 functions as a negative regulator of insulin- and/or IGF1-mediated signaling.  相似文献   

9.
Insulin receptor substrates (IRS) mediate biological actions of insulin, growth factors, and cytokines. All four mammalian IRS proteins contain pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains at their N termini. However, the molecules diverge in their C-terminal sequences. IRS3 is considerably shorter than IRS1, IRS2, and IRS4, and is predicted to interact with a distinct group of downstream signaling molecules. In the present study, we investigated interactions of IRS3 with various signaling molecules. The PTB domain of mIRS3 is necessary and sufficient for binding to the juxtamembrane NPXpY motif of the insulin receptor in the yeast two-hybrid system. This interaction is stronger if the PH domain or the C-terminal phosphorylation domain is retained in the construct. As determined in a modified yeast two-hybrid system, mIRS3 bound strongly to the p85 subunit of phosphatidylinositol 3-kinase. Although high affinity interaction required the presence of at least two of the four YXXM motifs in mIRS3, there was not a requirement for specific YXXM motifs. mIRS3 also bound to SHP2, Grb2, Nck, and Shc, but less strongly than to p85. Studies in COS-7 cells demonstrated that deletion of either the PH or the PTB domain abolished insulin-stimulated phosphorylation of mIRS3. Insulin stimulation promoted the association of mIRS3 with p85, SHP2, Nck, and Shc. Despite weak association between mIRS3 and Grb2, this interaction was not increased by insulin, and may not be mediated by the SH2 domain of Grb2. Thus, in contrast to other IRS proteins, mIRS3 appears to have greater specificity for activation of the phosphatidylinositol 3-kinase pathway rather than the Grb2/Ras pathway.  相似文献   

10.
A critical event in T cell receptor (TCR)-mediated signaling is the recruitment of hematopoietic-specific adaptor proteins that collect and transmit signals downstream of the TCR. Gads, a member of the Grb2 family of SH2 and SH3 domain-containing adaptors, mediates the formation of a complex between LAT and SLP-76 that is essential for signal propagation from the TCR. Here we examine the binding specificity of the Gads and Grb2 SH3 domains using peptide arrays and find that a nonproline-based R-X-X-K motif found in SLP-76 binds to the Gads carboxy-terminal SH3 domain with high affinity (K(D) = 240 +/- 45 nM). The Grb2 C-terminal SH3 domain also binds this motif, but with a 40-fold lower affinity than Gads. Single point mutations in either the relevant R (237) or K (240) completely abrogated SLP-76 association with Gads in vivo and impaired SLP-76 function. A chimeric Grb2 protein, possessing the C-terminal SH3 domain of Gads, was able to partially substitute for Gads in signaling downstream of the T cell receptor. These results provide a molecular explanation for the specific role of Gads in T cell receptor signaling, and identify a discrete subclass of SH3 domains whose binding is dependent on a core R-X-X-K motif.  相似文献   

11.
Dynamin function is mediated in part through association of its proline-rich domain (PRD) with the Src homology 3 (SH3) domains of several putative binding proteins. To assess the specificity and kinetics of this process, we undertook surface plasmon resonance studies of the interaction between isolated PRDs of dynamin-1 and -2 and several purified SH3 domains. Glutathione S-transferase-linked SH3 domains bound with high affinity (K(D) approximately 10 nm to 1 microm) to both dynamin-1 and -2. The simplest interaction appeared to take place with the amphiphysin-SH3 domain; this bound to a single high affinity site (K(D) approximately 10 nm) in the C terminus of dynamin-1 PRD, as predicted by previous studies. Binding to the dynamin-2 PRD was also monophasic but with a slightly lower affinity (K(D) approximately 25 nm). Endophilin-SH3 binding to both dynamin-1 and -2 PRDs was biphasic, with one high affinity site (K(D) approximately 14 nm) in the N terminus of the PRD and another lower affinity site (K(D) approximately 60 nm) in the C terminus of dynamin-1. The N-terminal site in dynamin-2 PRD had a 10-fold lower affinity for endophilin-SH3. Preloading of dynamin-1 PRD with the amphiphysin-SH3 domain partially occluded binding of the endophilin-SH3 domain, indicating overlap between the binding sites in the C terminus, but endophilin was still able to interact with the high affinity N-terminal site. This shows that more than one SH3 domain can simultaneously bind to the PRD and suggests that competition probably occurs in vivo between different SH3-containing proteins for the limited number of PXXP motifs. Endophilin-SH3 binding to the high affinity site was disrupted when dynamin-1 PRD was phosphorylated with Cdk5, indicating that this site overlaps the phosphorylation sites, but amphiphysin-SH3 binding was unaffected. Other SH3 domains showed similarly complex binding characteristics, and substantial differences were noted between the PRDs from dynamin-1 and -2. For example, SH3 domains from c-Src, Grb2, and intersectin bound only to the C-terminal half of dynamin-2 PRD but to both the N- and C-terminal portions of dynamin-1 PRD. Thus, differential binding of SH3 domain-containing proteins to dynamin-1 and -2 may contribute to the distinct functions performed by these isoforms.  相似文献   

12.
The COOH-terminal domain of the NR2D subunit of the NMDA receptor contains proline-rich regions that show striking homology to sequences known to bind to Src homology 3 (SH3) domains. To determine whether the proline-rich region of the NR2D subunit interacts with specific SH3 domains, in vitro SH3 domain binding assays were performed. A proline-rich fragment of the NR2D subunit (2D(866-1064)) bound to the Abl SH3 domain but not to the SH3 domains from Src, Fyn, Grb2, GAP, or phospholipase C-gamma (PLCgamma). Co-immunoprecipitation of NR2D with Abl suggests stable association of NR2D and Abl in transfected cells. The SH3 domain plays an important role in the negative regulation of Abl kinase activity. To determine whether the interaction of NR2D with the Abl SH3 domain alters Abl kinase activity, Abl was expressed alone or with NR2D in 293T cells. Autophosphorylation of Abl was readily observed when Abl was expressed alone. However, co-expression of Abl with 2D(866-1064) or full-length NR2D inhibited autophosphorylation. 2D(866-1064) did not inhibit DeltaSH3 Abl, indicating a requirement for the Abl SH3 domain in the inhibitory effect. Similarly, 2D(866-1064) did not inhibit the catalytic activity of Abl-PP, which contains two point mutations in the SH2-kinase linker domain that release the negative kinase regulation by the SH3 domain. In contrast, the full-length NR2D subunit partially inhibited the autokinase activity of both DeltaSH3 Abl and Abl-PP, suggesting that NR2D and Abl may interact at multiple sites. Taken together, the data in this report provide the first evidence for a novel inhibitory interaction between the NR2D subunit of the NMDA receptor and the Abl tyrosine kinase.  相似文献   

13.
Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses   总被引:22,自引:0,他引:22  
Gab1 is a substrate of the receptor tyrosine kinase c-Met and involved in c-Met-specific branching morphogenesis. It associates directly with c-Met via the c-Met-binding domain, which is not related to known phosphotyrosine-binding domains. In addition, Gab1 is engaged in a constitutive complex with the adaptor protein Grb2. We have now mapped the c-Met and Grb2 interaction sites using reverse yeast two-hybrid technology. The c-Met-binding site is localized to a 13-amino acid region unique to Gab1. Insertion of this site into the Gab1-related protein p97/Gab2 was sufficient to confer c-Met-binding activity. Association with Grb2 was mapped to two sites: a classical SH3-binding site (PXXP) and a novel Grb2 SH3 consensus-binding motif (PX(V/I)(D/N)RXXKP). To detect phosphorylation-dependent interactions of Gab1 with downstream substrates, we developed a modified yeast two-hybrid assay and identified PI(3)K, Shc, Shp2, and CRKL as interaction partners of Gab1. In a trk-met-Gab1-specific branching morphogenesis assay, association of Gab1 with Shp2, but not PI(3)K, CRKL, or Shc was essential to induce a biological response in MDCK cells. Overexpression of a Gab1 mutant deficient in Shp2 interaction could also block HGF/SF-induced activation of the MAPK pathway, suggesting that Shp2 is critical for c-Met/Gab1-specific signaling.  相似文献   

14.
Integrins facilitate cell attachment to the extracellular matrix, and these interactions generate cell survival, proliferation, and motility signals. Integrin signals are relayed in part by focal adhesion kinase (FAK) activation and the formation of a transient signaling complex initiated by Src homology 2 (SH2)-dependent binding of Src family protein-tyrosine kinases to the FAK Tyr-397 autophosphorylation site. Here we show that in viral Src (v-Src)-transformed NIH3T3 fibroblasts, an adhesion-independent FAK-Src signaling complex occurs. Co-expression studies in human 293T cells showed that v-Src could associate with and phosphorylate a Phe-397 FAK mutant at Tyr-925 promoting Grb2 binding to FAK in suspended cells. In vitro, glutathione S-transferase fusion proteins of the v-Src SH3 but not c-Src SH3 domain bound to FAK in lysates of NIH3T3 fibroblasts. The v-Src SH3-binding sites were mapped to known proline-X-X-proline (PXXP) SH3-binding motifs in the FAK N- (residues 371-377) and C-terminal domains (residues 712-718 and 871-882) by in vitro pull-down assays, and these sites are composed of a PXXPXXPhi (where Phi is a hydrophobic residue) v-Src SH3 binding consensus. Sequence comparisons show that residues in the RT loop region of the c-Src and v-Src SH3 domains differ. Substitution of c-Src RT loop residues (Arg-97 and Thr-98) for those found in the v-Src SH3 domain (Trp-97 and Ile-98) enhanced the binding of distinct NIH3T3 cellular proteins to a glutathione S-transferase fusion protein of the c-Src (Trp-97 + Ile-98) SH3 domain. FAK was identified as a c-Src (Trp-97 + Ile-98) SH3 domain target in fibroblasts, and co-expression studies in 293T cells showed that full-length c-Src (Trp-97 + Ile-98) could associate in vivo with Phe-397 FAK in an SH2-independent manner. These studies establish a functional role for the v-Src SH3 domain in stabilizing an adhesion-independent signaling complex with FAK.  相似文献   

15.
16.
src family tyrosine kinases contain two noncatalytic domains termed src homology 3 (SH3) and SH2 domains. Although several other signal transduction molecules also contain tandemly occurring SH3 and SH2 domains, the function of these closely spaced domains is not well understood. To identify the role of the SH3 domains of src family tyrosine kinases, we sought to identify proteins that interacted with this domain. By using the yeast two-hybrid system, we identified p62, a tyrosine-phosphorylated protein that associates with p21ras GTPase-activating protein, as a src family kinase SH3-domain-binding protein. Reconstitution of complexes containing p62 and the src family kinase p59fyn in HeLa cells demonstrated that complex formation resulted in tyrosine phosphorylation of p62 and was mediated by both the SH3 and SH2 domains of p59fyn. The phosphorylation of p62 by p59fyn required an intact SH3 domain, demonstrating that one function of the src family kinase SH3 domains is to bind and present certain substrates to the kinase. As p62 contains at least five SH3-domain-binding motifs and multiple tyrosine phosphorylation sites, p62 may interact with other signalling molecules via SH3 and SH2 domain interactions. Here we show that the SH3 and/or SH2 domains of the signalling proteins Grb2 and phospholipase C gamma-1 can interact with p62 both in vitro and in vivo. Thus, we propose that one function of the tandemly occurring SH3 and SH2 domains of src family kinases is to bind p62, a multifunctional SH3 and SH2 domain adapter protein, linking src family kinases to downstream effector and regulatory molecules.  相似文献   

17.
Grb2-Sos1 interaction, mediated by the canonical binding of N-terminal SH3 (nSH3) and C-terminal SH3 (cSH3) domains of Grb2 to a proline-rich sequence in Sos1, provides a key regulatory switch that relays signaling from activated receptor tyrosine kinases to downstream effector molecules such as Ras. Here, using isothermal titration calorimetry in combination with site-directed mutagenesis, we show that the nSH3 domain binds to a Sos1-derived peptide containing the proline-rich consensus motif PPVPPR with an affinity that is nearly threefold greater than that observed for the binding of cSH3 domain. We further demonstrate that such differential binding of nSH3 domain relative to the cSH3 domain is largely due to the requirement of a specific acidic residue in the RT loop of the β-barrel fold to engage in the formation of a salt bridge with the arginine residue in the consensus motif PPVPPR. While this role is fulfilled by an optimally positioned D15 in the nSH3 domain, the chemically distinct and structurally non-equivalent E171 substitutes in the case of the cSH3 domain. Additionally, our data suggest that salt tightly modulates the binding of both SH3 domains to Sos1 in a thermodynamically distinct manner. Our data further reveal that, while binding of both SH3 domains to Sos1 is under enthalpic control, the nSH3 binding suffers from entropic penalty in contrast to entropic gain accompanying the binding of cSH3, implying that the two domains employ differential thermodynamic mechanisms for Sos1 recognition. Our new findings are rationalized in the context of 3D structural models of SH3 domains in complex with the Sos1 peptide. Taken together, our study provides structural basis of the differential binding of SH3 domains of Grb2 to Sos1 and a detailed thermodynamic profile of this key protein-protein interaction pertinent to cellular signaling and cancer.  相似文献   

18.
Both beta(2)- and beta(3)-adrenergic receptors (ARs) are able to activate the extracellular signal-regulated kinase (ERK) pathway. We previously showed that c-Src is required for ERK activation by beta(2)AR and that it is recruited to activated beta(2)AR through binding of the Src homology 3 (SH3) domain to proline-rich regions of the adapter protein beta-arrestin1. Despite the absence of sites for phosphorylation and beta-arrestin binding, ERK activation by beta(3)AR still requires c-Src. Agonist activation of beta(2)AR, but not beta(3)AR, led to redistribution of green fluorescent protein-tagged beta-arrestin to the plasma membrane. In beta-arrestin-deficient COS-7 cells, beta-agonist-dependent co-precipitation of c-Src with the beta(2)AR required exogenous beta-arrestin, but activated beta(3)AR co-precipitated c-Src in the absence or presence of beta-arrestin. ERK activation and Src co-precipitation with beta(3)AR also occurred in adipocytes in an agonist-dependent and pertussis toxin-sensitive manner. Protein interaction studies show that the beta(3)AR interacts directly with the SH3 domain of Src through proline-rich motifs (PXXP) in the third intracellular loop and the carboxyl terminus. ERK activation and Src co-precipitation were abolished in cells expressing point mutations in these PXXP motifs. Together, these data describe a novel mechanism of ERK activation by a G protein-coupled receptor in which the intracellular domains directly recruit c-Src.  相似文献   

19.
The Src homology 3 (SH3) domain of Fyn binds to a conserved PXXP motif on microtubule-associated protein-2. Co-transfections into COS7 cells and in vitro kinase assays performed with Fyn and wild-type, or mutant MAP-2c, determined that Fyn phosphorylated MAP-2c on tyrosine 67. The phosphorylation generated a consensus sequence for the binding of the SH2 domain of Grb2 (pYSN). Pull-down assays with SH2-Grb2 from human fetal brain homogenates, and co-immunoprecipitation of Grb2 and MAP-2 confirmed the interaction in vivo, and demonstrated that MAP-2c is tyrosine-phosphorylated in human fetal brain. Filter overlay assays confirmed that the SH2 domain of Grb2 binds to human MAP-2c following incubation with active Fyn. Enzyme-linked immunosorbent assays confirmed the interaction between the SH2 domain of Grb2 and a tyrosine-phosphorylated MAP-2 peptide spanning the pY(67)SN motif. Thus, MAP-2c can directly recruit multiple signaling proteins important for central nervous system development.  相似文献   

20.
Quantitative analysis of Grb2/dynamin interaction through plasmon resonance analysis (BIAcore) using Grb2 mutants showed that the high affinity measured between Grb2 and dynamin is essentially mediated by the N-SH3 domain of Grb2. In order to study the interactions between Grb2 and either dynamin or Sos in more detail, Grb2 N-SH3 domains containing different mutations have been analysed. Two mutations were located on the hydrophobic platform binding proline-rich peptides (Y7V and P49L) and one (E40T) located in a region that we had previously shown to be essential for Grb2/dynamin interactions. Through NMR analysis, we have clearly demonstrated that the structure of the P49L mutant is not folded, while the other E40T and Y7V mutants adopt folded structures that are quite similar to that described for the reference domain. Nevertheless, these point mutations were shown to alter the overall stability of these domains by inducing an equilibrium between a folded and an unfolded form. The complex formed between the peptide VPPPVPPRRR, derived from Sos, and the E40T mutant was shown to have the same 3D structure as that described for the wild-type SH3 domain. However, the VPPPVPPRRR peptide adopts a slightly different orientation when it is complexed with the Y7V mutant. Finally, the affinity of the proline-rich peptide GPPPQVPSRPNR, derived from dynamin, for the Grb2 N-SH3 domain was too low to be analyzed by NMR. Thus, the interaction between either Sos or dynamin and the SH3 mutants were tested on a cellular homogenate by means of a far-Western blot analysis. In these conditions, the P49L mutant was shown to be devoid of affinity for Sos as well as for dynamin. The Y7V SH3 mutant displayed a decrease of affinity for both Sos and dynamin, while the E40T mutant exhibited a decrease of affinity only for dynamin. These results support the existence of two binding sites between dynamin and the Grb2 N-SH3 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号