首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J E Mermoud  P T Cohen    A I Lamond 《The EMBO journal》1994,13(23):5679-5688
Splicing of mRNA precursors (pre-mRNA) is preceded by assembly of the pre-mRNA with small nuclear ribonucleoprotein particles (snRNPs) and protein factors to form a splicesome. Here we show that stimulating Ser/Thr-specific protein dephosphorylation selectively inhibits an early step during mammalian spliceosome assembly. Treatment of HeLa nuclear splicing extracts with human protein phosphatase 1 (PP1) expressed in Escherichia coli, or PP1 purified from rabbit skeletal muscle, prevents pre-spliceosome E complex (early complex) formation and stable binding of U2 and U4/U6.U5 snRNPs to the pre-mRNA. PP1 does not inhibit splicing catalysis if added after spliceosome assembly has taken place. Addition of purified SR protein splicing factors restores spliceosome formation and splicing to PP1-inhibited extracts, consistent with SR proteins being targets regulated by phosphorylation. These data extend earlier observations showing that splicing catalysis, but not spliceosome assembly, is blocked by inhibiting protein phosphatases. It therefore appears that pre-mRNA splicing, in common with other biological processes, can be regulated both positively and negatively by reversible protein phosphorylation.  相似文献   

2.
Splicing factor 1 (SF1) functions at early stages of pre-mRNA splicing and contributes to splice site recognition by interacting with the essential splicing factor U2AF65 and binding to the intron branch site. We have identified an 80 kDa substrate of cGMP-dependent protein kinase-I (PKG-I) isolated from rat brain, which is identical to SF1. PKG phosphorylates SF1 at Ser20, which inhibits the SF1-U2AF65 interaction leading to a block of pre-spliceosome assembly. Mutation of Ser20 to Ala or Thr also inhibits the interaction with U2AF65, indicating that Ser20 is essential for binding. SF1 is phosphorylated in vitro by PKG, but not by cAMP-dependent protein kinase A (PKA). Phosphorylation of SF1 also occurs in cultured neuronal cells and is increased on Ser20 in response to a cGMP analogue. These results suggest a new role for PKG in mammalian pre-mRNA splicing by regulating in a phosphorylation-dependent manner the association of SF1 with U2AF65 and spliceosome assembly.  相似文献   

3.
Roles of U4 and U6 snRNAs in the assembly of splicing complexes.   总被引:14,自引:3,他引:11       下载免费PDF全文
A series of U4 and U6 snRNA mutants was analysed in Xenopus oocytes to determine whether they block splicing complex assembly or splicing itself. All the U4 and U6 mutants found to be inactive in splicing complementation resulted in defects in assembly of either U4/U6 snRNP or of splicing complexes. No mutants were found to separate the entry of U5 and U6 snRNAs into splicing complexes and neither of these RNAs was able to associate with the pre-mRNA in the absence of U4. In the absence of U6 snRNA, however, U4 entered a complex containing pre-mRNA as well as the U1 and U2 snRNAs. U6 nucleotides whose mutation resulted in specific blockage of the second step of splicing in Saccharomyces cerevisiae are shown not to be essential for splicing in the oocyte assay. The results are discussed in terms of the roles of U4 and U6 in the assembly and catalytic steps of the splicing process.  相似文献   

4.
Protein phosphorylation and dephosphorylation are both important for multiple steps in the splicing pathway. Members of the PP1 and PP2A subfamilies of phospho-serine/threonine phosphatases play essential but redundant roles in the second step of the splicing reaction. PP6, a member of the PP2A subfamily, is the mammalian homolog of yeast Sit4p and ppe1, which are involved in cell cycle regulation; however, the involvement of PP6 in the splicing pathway remains unclear. Here we show that PP2A family members physically associate with the spliceosome throughout the splicing reaction. PP2A holoenzyme and PP6 were found stably associated with U1 snRNP. Together our findings indicate that these phosphatases regulate splicing catalysis involving U1 snRNP and suggest an important evolutionary conserved role of PP2A family phosphatases in pre-mRNA splicing.  相似文献   

5.
S Meek  N Morrice  C MacKintosh 《FEBS letters》1999,457(3):494-498
Proteins of approximately 35, 55 and 65kDa were purified from cauliflower extracts by microcystin-Sepharose chromatography and identified by amino acid sequencing as plant forms of protein (serine/threonine) phosphatase 1 (PP1) catalytic subunit, PP5 and a regulatory A-subunit of PP2A, respectively. Peptides that corresponded both to the tetratricopeptide (TPR) repeat and catalytic domains of PP5 were identified. Similar to mammalian PP5,the casein phosphatase activity of plant PP5 was activated >10-fold by arachidonic acid, with half-maximal stimulation occurring at approximately 100 microM lipid.  相似文献   

6.
RNA duplexes containing the modified base 2-amino-adenine in place of adenine are stabilized through the formation of three hydrogen bonds in 2-amino A.U base pairs. Antisense 2'-O-alkyloligoribonucleotide probes incorporating 2-aminoadenosine are thus able to efficiently affinity select RNP particles which are otherwise inaccessible. This has allowed the efficient and specific depletion of U5 snRNP from HeLa cell nuclear splicing extracts. U5 snRNP is shown to be essential for spliceosome assembly and for both steps of pre-mRNA splicing. The absence of U5 snRNP prevents the stable association of U4/U6 but not U1 and U2 snRNPs with pre-mRNA.  相似文献   

7.
S H Kim  J Smith  A Claude    R J Lin 《The EMBO journal》1992,11(6):2319-2326
Unlike autocatalyzed self-splicing reactions, nuclear pre-mRNA splicing requires transacting macromolecules and ATP. A protein encoded by the PRP2 gene of Saccharomyces cerevisiae is required, in conjunction with ATP, for the first cleavage-ligation reaction of pre-mRNA splicing. In this study, we have purified two forms of the PRP2 gene product with apparent molecular weights of 100 kDa and 92 kDa, from a yeast strain overproducing the protein. Both proteins were indistinguishable in their ability to complement extracts derived from a heat-sensitive prp2 mutant. Furthermore, we show that the PRP2 protein is capable of hydrolyzing nucleoside triphosphates in the presence of single-stranded RNAs such as poly(U). However, purified PRP2 by itself did not unwind double-stranded RNA substrates. The fact that an RNA-dependent NTPase activity is intrinsic to PRP2 may account for the ATP requirement in the first catalytic reaction of pre-mRNA splicing.  相似文献   

8.
Kinases and phosphatases participate in precursor messenger RNA (pre-mRNA) splicing regulation, but their precise roles and the identities of their cofactors and substrates remain poorly understood. The human Ser/Thr phosphatase PP2Cgamma promotes spliceosome assembly. We show that PP2Cgamma's distinctive acidic domain is essential for its activity in splicing and interacts with YB-1, a spliceosome-associated factor. Moreover, PP2Cgamma is a phosphoprotein in vivo, and its acidic domain is phosphorylated under splicing conditions in vitro. PP2Cgamma phosphorylation enhances its interaction with YB-1 and is reversed by the phosphatase in cis. PP2Cgamma knockdown leaves constitutive splicing unaffected but inhibits cell proliferation and affects alternative splicing of CD44, a YB-1 target. This effect on splicing regulation is mediated by PP2Cgamma's acidic domain, which is essential to promote inclusion of CD44 exons v4 and v5 in vivo. We propose that PP2Cgamma modulates alternative splicing of specific pre-mRNAs coregulated by YB-1.  相似文献   

9.
A I Lamond  B Sproat  U Ryder  J Hamm 《Cell》1989,58(2):383-390
We have used oligonucleotides made of 2'-OMe RNA to analyze the role of separate domains of U2 snRNA in the splicing process. We show that antisense 2'-OMe RNA oligonucleotides bind efficiently and specifically to U2 snRNP and demonstrate that masking of two separate regions of U2 snRNA can inhibit splicing by affecting different steps in the spliceosome assembly pathway. Masking the 5' terminus of U2 snRNA does not prevent U2 snRNP binding to pre-mRNA but blocks subsequent assembly of a functional spliceosome. By contrast, masking of U2 sequences complementary to the pre-mRNA branch site completely inhibits binding of pre-mRNA. Hybrid formation at the branch site complementary region also triggers a specific change which affects the 5' terminus of U2 snRNA.  相似文献   

10.
The protein serine/threonine phosphatase (PP) type 2A family consists of three members: PP2A, PP4, and PP6. Specific rabbit and sheep antibodies corresponding to each catalytic subunit, as well as a rabbit antibody recognizing all three subunits, were utilized to examine the expression of these enzymes in select rat tissue extracts. PP2A, PP4, and PP6 catalytic subunits (PP2A(C), PP4(C), and PP6(C), respectively) were detected in all rat tissue extracts examined and exhibited some differences in their levels of expression. The expression of alpha4, an interacting protein for PP2A family members that may function downstream of the target of rapamycin (Tor), was also examined using specific alpha4 sheep antibodies. Like the phosphatase catalytic subunits, alpha4 was ubiquitously expressed with particularly high levels in the brain and thymus. All three PP2A family members, but not alpha4, bound to the phosphatase affinity resin microcystin-Sepharose. The phosphatase catalytic subunits were purified to apparent homogeneity (PP2A(C) and PP4(C)) or near homogeneity (PP6(C)) from bovine testes soluble extracts following ethanol precipitation and protein extraction. In contrast to PP2A(C), PP4(C) and PP6(C) exhibited relatively low phosphatase activity towards several substrates. Purified PP2A(C) and native PP2A in cellular extracts bound to GST-alpha4, and co-immunoprecipitated with endogenous alpha4 and ectopically expressed myc-tagged alpha4. The interaction of PP2A(C) with alpha4 was unaffected by rapamycin treatment of mammalian cells; however, protein serine/threonine phosphatase inhibitors such as okadaic acid and microcystin-LR disrupted the alpha4/PP2A complex. Together, these findings increase our understanding of the biochemistry of alpha4/phosphatase complexes and suggest that the alpha4 binding site within PP2A may include the phosphatase catalytic domain.  相似文献   

11.
Far Westerns with digoxigenin-conjugated protein phosphatase-1 (PP1) catalytic subunit identified PP1-binding proteins in extracts from bovine, rat, and human brain. A major 70-kDa PP1-binding protein was purified from bovine brain cortex plasma membranes, using affinity chromatography on the immobilized phosphatase inhibitor, microcystin-LR. Mixed peptide sequencing following cyanogen bromide digestion identified the 70-kDa membrane-bound PP1-binding protein as bovine neurofilament-L (NF-L). NF-L was the major PP1-binding protein in purified preparations of bovine spinal cord neurofilaments and the cytoskeletal compartment known as post-synaptic density, purified from rat brain cortex. Bovine neurofilaments, at nanomolar concentrations, inhibited the phosphorylase phosphatase activity of rabbit skeletal muscle PP1 catalytic subunit but not the activity of PP2A, another major serine/threonine phosphatase. PP1 binding to bovine NF-L was mapped to the head region. This was confirmed by both binding and inhibition of PP1 by recombinant human NF-L fragments. Together, these studies indicate that NF-L fulfills many of the biochemical criteria established for a PP1-targeting subunit and suggest that NF-L may target the functions of PP1 in membranes and cytoskeleton of mammalian neurons.  相似文献   

12.
Nucleotide excision repair of DNA in mammalian cells uses more than 20 polypeptides to remove DNA lesions caused by UV light and other mutagens. To investigate whether reversible protein phosphorylation can significantly modulate this repair mechanism we studied the effect of specific inhibitors of Ser/Thr protein phosphatases. The ability of HeLa cell extracts to carry out nucleotide excision repair in vitro was highly sensitive to three toxins (okadaic acid, microcystin-LR and tautomycin), which block PP1- and PP2A-type phosphatases. Repair was more sensitive to okadaic acid than to tautomycin, suggesting the involvement of a PP2A-type enzyme, and was insensitive to inhibitor-2, which exclusively inhibits PP1-type enzymes. In a repair synthesis assay the toxins gave 70% inhibition of activity. Full activity could be restored to toxin-inhibited extracts by addition of purified PP2A, but not PP1. The p34 subunit of replication protein A was hyperphosphorylated in cell extracts in the presence of phosphatase inhibitors, but we found no evidence that this affected repair. In a coupled incision/synthesis repair assay okadaic acid decreased the production of incision intermediates in the repair reaction. The formation of 25-30mer oligonucleotides by dual incision during repair was also inhibited by okadaic acid and inhibition could be reversed with PP2A. Thus Ser/Thr- specific protein phosphorylation plays an important role in the modulation of nucleotide excision repair in vitro.  相似文献   

13.
Membrane-permeable compounds that reversibly inhibit a particular step in gene expression are highly useful tools for cell biological and biochemical/structural studies. In comparison with other gene expression steps where multiple small molecule effectors are available, very few compounds have been described that act as general inhibitors of pre-mRNA splicing. Here we report construction and validation of a set of mammalian cell lines suitable for the identification of small molecule inhibitors of pre-mRNA splicing. Using these cell lines, we identified the natural product isoginkgetin as a general inhibitor of both the major and minor spliceosomes. Isoginkgetin inhibits splicing both in vivo and in vitro at similar micromolar concentrations. It appears to do so by preventing stable recruitment of the U4/U5/U6 tri-small nuclear ribonucleoprotein, resulting in accumulation of the prespliceosomal A complex. Like two other recently reported general pre-mRNA splicing inhibitors, isoginkgetin has been previously described as an anti-tumor agent. Our results suggest that splicing inhibition is the mechanistic basis of the anti-tumor activity of isoginkgetin. Thus, pre-mRNA splicing inhibitors may represent a novel avenue for development of new anti-cancer agents.  相似文献   

14.
The pre-mRNA splicing pathway is highly conserved from yeast (S. cerevisiae) to mammals. Of the four snRNPs involved in splicing three (U1, U2 and U4/U6) have been shown to be essential for in vitro splicing. To examine the remaining snRNP, we utilized our previously described genetic procedures (Seraphin and Rosbash, 1989) to prepare yeast extracts depleted of U5 snRNP. The results show that U5 snRNP is necessary for both steps of pre- mRNA splicing and for proper spliceosome assembly, i.e., addition of the U4/U5/U6 triple snRNP. The prior steps of U1 and U2 snRNP addition occur normally in the absence of U5 snRNP.  相似文献   

15.
Pre-mRNA introns are spliced in a macromolecular machine, the spliceosome. For each round of splicing, the spliceosome assembles de novo in a series of ATP-dependent steps involving numerous changes in RNA-RNA and RNA-protein interactions. As currently understood, spliceosome assembly proceeds by addition of discrete U1, U2, and U4/U6*U5 snRNPs to a pre-mRNA substrate to form functional splicing complexes. We characterized a 45S yeast penta-snRNP which contains all five spliceosomal snRNAs and over 60 pre-mRNA splicing factors. The particle is functional in extracts and, when supplied with soluble factors, is capable of splicing pre-mRNA. We propose that the spliceosomal snRNPs associate prior to binding of a pre-mRNA substrate rather than with pre-mRNA via stepwise addition of discrete snRNPs.  相似文献   

16.
Pre-mRNA splicing occurs in spliceosomes whose assembly and activation are critical for splice site selection and catalysis. The highly conserved NineTeen complex protein complex stabilizes various snRNA and protein interactions early in the spliceosome assembly pathway. Among several NineTeen complex-associated proteins is the nonessential protein Bud31/Ycr063w, which is also a component of the Cef1p subcomplex. A role for Bud31 in pre-mRNA splicing is implicated by virtue of its association with splicing factors, but its specific functions and spliceosome interactions are uncharacterized. Here, using in vitro splicing assays with extracts from a strain lacking Bud31, we illustrate its role in efficient progression to the first catalytic step and its requirement for the second catalytic step in reactions at higher temperatures. Immunoprecipitation of functional epitope-tagged Bud31 from in vitro reactions showed that its earliest association is with precatalytic B complex and that the interaction continues in catalytically active complexes with stably bound U2, U5, and U6 small nuclear ribonucleoproteins. In complementary experiments, wherein precatalytic spliceosomes are selected from splicing reactions, we detect the occurrence of Bud31. Cross-linking of proteins to pre-mRNAs with a site-specific 4-thio uridine residue at the -3 position of exon 1 was tested in reactions with WT and bud31 null extracts. The data suggest an altered interaction between a ~25-kDa protein and this exonic residue of pre-mRNAs in the arrested bud31 null spliceosomes. These results demonstrate the early spliceosomal association of Bud31 and provide plausible functions for this factor in stabilizing protein interactions with the pre-mRNA.  相似文献   

17.
Two different models currently exist for the assembly pathway of the spliceosome, namely, the traditional model, in which spliceosomal snRNPs associate in a stepwise, ordered manner with the pre-mRNA, and the holospliceosome model, in which all spliceosomal snRNPs preassemble into a penta-snRNP complex. Here we have tested whether the spliceosomal A complex, which contains solely U1 and U2 snRNPs bound to pre-mRNA, is a functional, bona fide assembly intermediate. Significantly, A complexes affinity-purified from nuclear extract depleted of U4/U6 snRNPs (and thus unable to form a penta-snRNP) supported pre-mRNA splicing in nuclear extract depleted of U2 snRNPs, whereas naked pre-mRNA did not. Mixing experiments with purified A complexes and naked pre-mRNA additionally confirmed that under these conditions, A complexes do not form de novo. Thus, our studies demonstrate that holospliceosome formation is not a prerequisite for generating catalytically active spliceosomes and that, at least in vitro, the U1 and U2 snRNPs can functionally associate with the pre-mRNA, prior to and independent of the tri-snRNP. The ability to isolate functional spliceosomal A complexes paves the way to study in detail subsequent spliceosome assembly steps using purified components.  相似文献   

18.
Our knowledge of the serine/threonine protein phosphatases of the mammalian nucleus is limited compared with their cytosolic counterparts. Microcystin-Sepharose chromatography and mass spectrometry were utilized to affinity purify and identify protein phosphatase-associated proteins from isolated rat liver nuclei. Far Western analysis with labeled protein phosphatase 1 (PP1) showed that many more PP1 binding proteins exist in the nucleus than were previously demonstrated. Mass spectrometry confirmed the presence in the nucleus of the mammalian PP1 isoforms alpha1, alpha2, beta, and gamma1, plus the Aalpha and several of the B and B' subunits that are complexed to PP2A. Other proteins enriched on the microcystin matrix include the spliceosomal proteins known as the U2 snRNPs SAP145 and SAP155 and the U5 snRNPs p116 and p200, myosin heavy chain, and a nuclear PP1 myosin-targeting subunit related to M110. The putative RNA binding protein ZAP was also established as a nuclear PP1 binding protein using the criteria of co-purification with PP1 on microcystin-Sepharose, co-immunoprecipation, binding PP1 in an overlay assay, and presence of a putative PP1 binding site (KKRVRWAD). These results further support a key role for protein phosphatases in several nuclear functions, including the regulation of pre-mRNA splicing.  相似文献   

19.
Two sequences important for pre-mRNA splicing precede the 3' end of introns in higher eukaryotes, the branch point (BP) and the polypyrimidine (Py) tract. Initial recognition of these signals involves cooperative binding of the splicing factor SF1/mammalian branch point binding protein (mBBP) to the BP and of U2AF(65) to the Py tract. Both factors are required for recruitment of the U2 small nuclear ribonucleoprotein particle (U2 snRNP) to the BP in reactions reconstituted from purified components. In contrast, extensive depletion of ST1/BBP in Saccharomyces cerevisiae does not compromise spliceosome assembly or splicing significantly. As BP sequences are less conserved in mammals, these discrepancies could reflect more stringent requirements for SF1/BBP in this system. We report here that extensive depletion of SF1/mBBP from nuclear extracts of HeLa cells results in only modest reduction of their activity in spliceosome assembly and splicing. Some of these effects reflect differences in the kinetics of U2 snRNP binding. Although U2AF(65) binding was reduced in the depleted extracts, the defects caused by SF1/mBBP depletion could not be fully restored by an increase in occupancy of the Py tract by exogenously added U2AF(65), arguing for a role of SF1/mBBP in U2 snRNP recruitment distinct from promoting U2AF(65) binding.  相似文献   

20.
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号