首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant plasmid has been designed to express the gene encoding a type I methotrexate-resistant dihydrofolate reductase, derived from the bacterial plasmid R483, in DHFR- Chinese hamster ovary cells. Vectors containing the wild type gene, whose coding sequence initiates with a GTG codon, fail to direct the synthesis of detectable levels of protein. Substitution of the GTG codon by an AG codon using in vitro mutagenesis overcomes this block; cells transfected with the modified vector synthesize a functional prokaryotic protein that sustains the growth of these cells in the presence of dihydrofolic acid in the culture media. This property is consistent with the inability of the type I enzyme to reduce folate to dihydrofolate, and enabled the development of a selection strategy whereby prokaryotic and mammalian DHFRs genes could be used sequentially as independently selectable markers.  相似文献   

2.
A cDNA clone, pMA1949, detects two mRNA species in wheat seedling tissue that are late embryogenesis-abundant (LEA) and dehydration stress-inducible. Sequence analysis of the pMA1949 clone shows it to be a 991 bp partial cDNA encoding a polypeptide of 317 amino acids with homology to two group 3 LEA proteins, carrot (DC8) and a soybean protein encoded by pGmPM2 cDNA. Molecular analysis of the deduced protein reveals a 33 kDa acidic and extremely hydrophilic protein with potential amphiphilic -helical regions. In addition, the protein contains eleven similar, contiguous repeats of 11 amino acids, which are separated by 118 amino acids from two additional and unique repeats of 36 residues each at the carboxyl end of the protein. Comparisons of sequences of reported group 3 LEA proteins revealed that there are two types, separable by sequence similarity of the 11 amino acid repeating motifs and by the presence or absence of a certain amino acid stretch at the carboxyl terminus. Based on resuls from these comparisons, we propose a second type of group 3 LEA proteins, called group 3 LEA (II).  相似文献   

3.
Two positive and negative selectable markers were created for use in mammalian cells. They are based on two genes for the resistance to Blasticidin S (BlaS) and on the thymidine kinase (Tk) gene of herpes simplex virus (HSV). The markers can be selected positively by their ability to induce BlaS resistance and negatively on the induced sensitivity towards gancyclovir (GANC). Both constructs are also expressed in Escherichia coli and transfer BlaS resistance to this organism as well, making these markers very suitable for the construction of shuttle vectors.  相似文献   

4.
 Streptothricins are known as antimicrobial agents produced by Streptomyces spp. Bacterial resistance to streptothricin is mediated by specific enzymes exhibiting an acetyltransferase activity which renders the drug non-toxic for bacteria. The nucleotide sequence of several streptothricin resistance genes from bacteria have been described. Certain cells of eukaryotic parasites (such as Ustilago maydis or Leishmania spp.) are sensitive to streptothricin and the introduction of the bacterial resistance gene sat2 renders them resistant. We show that numerous species of plants are sensitive to low concentrations of streptothricin. Moreover, introduction of the bacterial resistance gene sat3 under the control of the 35S cauliflower mosaic virus promoter protects these cells from the toxic action of streptothricin. Therefore, sat3-mediated streptothricin resistance appears to be a promising selective marker for genetic manipulation of plant cells. Received: 6 November 1996 / Revision received: 9 January 1997 / Accepted: 22 March 1999  相似文献   

5.
The blasticidin S resistance gene (bsr), originally isolated from Bacillus cereus, was studied in Bacillus subtilis. It was found that a 617 bp fragment including the intact bsr gene and its 5' flanking region could confer BS resistance on B. subtilis when integrated in its chromosome, even in a single copy state. The construction of a bsr gene cassette and its practical application as a novel selection marker for B. subtilis are reported.  相似文献   

6.
7.
A negative selectable marker gene, codA, was successfully co-transformed with a GUS reporter gene to develop selectable marker gene-free transgenic plants. The pNC binary vector contained a T-DNA harboring the codA gene next to the nptII gene, while a second binary vector, pHG, contained a GUS reporter gene. Tobacco plants (Nicotiana tabacum cv. Samsun NN) were co-transformed via the mixture method with Agrobacterium tumefaciens LBA4404 strains harboring pNC and pHG, respectively. Seeds harvested from the co-transformants were sown on germination media containing 5-fluorocytosine (5-FC). Analysis of the progeny by GUS staining and PCR amplification revealed that all of the 5-FC-resistant R1 plants were codA free, and that the codA gene segregated independently of the GUS gene. Because codA-free seedlings developed normally on 5-FC-containing medium, we suggest that co-transformation with negatively selectable markers is a viable method for the production of easily distinguished, selectable marker gene-free transgenic plants.  相似文献   

8.
A non-antibiotic based selection system using l-lysine as selection agent and the lysine racemase (lyr) as selectable marker gene for plant transformation was established in this study. l-lysine was toxic to plants, and converted by Lyr into d-lysine which would subsequently be used by the transgenic plants as nitrogen source. Transgenic tobacco and Arabidopsis plants were successfully recovered on l-lysine medium at efficiencies of 23 and 2.4%, respectively. Phenotypic characterization of transgenic plants clearly revealed the expression of normal growth and developmental characteristics as that of wild-type plants, suggesting no pleiotropic effects associated with the lyr gene. The specific activity of Lyr in transgenic tobacco plants selected on l-lysine ranged from 0.77 to 1.06 mU/mg protein, whereas no activity was virtually detectable in the wild-type plants. In addition, the composition of the free amino acids, except aspartic acid, was not affected by the expression of the lyr gene in the transgenic tobacco plants suggesting very limited interference with endogenous amino acid metabolism. Interestingly, our findings also suggested that the plant aspartate kinases may possess an ability to distinguish the enantiomers of lysine for feedback regulation. To our knowledge, this is the first report to demonstrate that the lysine racemase selectable marker system is novel, less controversial and inexpensive than the traditional selection systems.  相似文献   

9.
Eucaryotic expression vectors containing the Escherichia coli pyrB gene (pyrB encodes the catalytic subunit of aspartate transcarbamylase [ATCase]) and the Tn5 phosphotransferase gene (G418 resistance module) were transfected into a mutant Chinese hamster ovary cell line possessing a CAD multifunctional protein lacking ATCase activity. G418-resistant transformants were isolated and analyzed for ATCase activity, the ability to complement the CAD ATCase defect, and the ability to resist high concentrations of the ATCase inhibitor N-(phosphonacetyl)-L-aspartate (PALA) by amplifying the donated pyrB gene sequences. We report that bacterial ATCase is expressed in these lines, that it complements the CAD ATCase defect in trans, and that its amplification engenders PALA resistance. In addition, we derived rapid and sensitive assay conditions which enable the determination of bacterial ATCase enzyme activity in the presence of mammalian ATCase.  相似文献   

10.
Sánchez-Puig JM  Blasco R 《Gene》2000,257(1):57-65
The antibiotic puromycin, an inhibitor of protein synthesis, was shown to inhibit vaccinia virus (VV) replication. We evaluated the use of puromycin-resistance (pac) gene as a selectable marker in VV. A recombinant vaccinia virus expressing pac (VV-pac) under the control of a viral early/late promoter was constructed and characterized. VV-pac grew in the presence of puromycin at concentrations that were inhibitory for the parental VV and toxic for the cells. Isolation of recombinant VV usually relies on plaque purification under selective conditions. Because virus plaquing was not feasible under inhibitory puromycin concentration, a protocol based on serial passage of virus was devised. The usefulness of this procedure in selecting pac expressing viruses was tested by isolating a recombinant VV.  相似文献   

11.
A Hussain  D Lewis  M Yu  P W Melera 《Gene》1992,112(2):179-188
Simian virus 40 promoter-enhancer-based mammalian expression plasmids using dihydrofolate reductase (DHFR)-encoding cDNA sequences originally isolated from two methotrexate (MTX)-resistant, DHFR-overproducing Chinese hamster lung cell lines were constructed. One, designated pSVA75, contains a DHFR cDNA that encodes leucine (Leu22) and corresponds to the wild type (wt), MTX-sensitive form of the enzyme [Melera et al., J. Biol. Chem. 263 (1988) 1978-1990]. The other plasmid, pSVA3, contains a cDNA that encodes a novel mutant form of the enzyme in which Leu22 has been changed to Phe [Melera et al., Mol. Cell Biol. 4 (1984) 38-48]. The resulting DHFR displays a 20-fold-enhanced resistance to inhibition by MTX, but maintains the catalytic activity of the wt enzyme [Albrecht et al., Cancer Res. 32 (1972) 1539-1546]. Transfection of DHFR- Chinese hamster ovary cells with either plasmid demonstrated that both were able to reconstitute the DHFR+ phenotype with equal efficiency (i.e., greater than 2.5 x 10(-3), indicating that both the wt and mutant enzymes were catalytically active in transfected cells. In addition, the mutant form of the enzyme was found to act as a dominant selectable marker when transfected into diploid DHFR+ cells, and to allow selection of resistant clones at low MTX concentrations (125 nM MTX) with a frequency of greater than 8 x 10(-4). Moreover, transfected clones were found to amplify their exogenous DHFR sequences to reasonably high levels (42-fold) at relatively low (888 nM) MTX concentrations, suggesting that substantial amplification of DHFR DNA and cotransfected sequences as well, can be achieved with this vector.  相似文献   

12.
Summary We show here that plant cells are sensitive to the antibiotic hygromycin-B4. We also show that a chimaeric gene consisting of the nopaline synthase (nos) gene regulatory elements and the E. coli derived hygromycin phosphotransferase (hpt) gene, when transferred to plants' cells, confers resistance to hygromycin B. The chimaeric nos-hpt gene enables efficient selection of DNA transfer to plant cells when used in conjunction with Ti plasmid-derived binary vectors in cocultivation experiments.  相似文献   

13.
Lin Y  Dion V  Wilson JH 《Mutation research》2005,572(1-2):123-131
CAG.CTG repeat expansions cause more than a dozen neurodegenerative diseases in humans. To define the mechanism of repeat instability in mammalian cells we developed a selectable assay to detect expansions of CAG.CTG triplet repeats in Chinese hamster ovary (CHO) cells. We showed previously that long tracts of CAG.CTG repeats, embedded in an intron of the APRT gene, kill expression of the gene, rendering the cells APRT-. By contrast, tracts with fewer than 34 repeats allow sufficient expression to give APRT+ cells. Although it should be possible to use APRT+ cells with short repeats to assay for expansion events by selecting for APRT- cells, we find that APRT+ cells with 31 repeats are not killed by the standard APRT- selection protocol, most likely because they produce too little Aprt to incorporate sufficient 8-azaadenine into their adenine pool. To overcome this problem, we devised a new selection, which increases the proportion of the adenine pool contributed by the salvage pathway by partially inhibiting the de novo pathway. We show that APRT- CHO cells with 61 or 95 CAG.CTG repeats survive this selection, whereas cells with 31 repeats die. Using this selection system, we can select for expansion to as few as 39 repeats. Thus, this assay can monitor expansions across the critical boundary from the longest lengths of normal alleles to the shortest lengths of disease alleles.  相似文献   

14.
The simian virus 40 (SV40)-pBR322 recombinant, pSV2, carrying the origin of SV40 replication and the gpt gene of Escherichia coli, has been stably introduced into Chinese hamster ovary hprt- cells. All gpt-transformed cell lines were found to contain one or more insertions of pSV2 sequences exclusively associated with high-molecular-weight DNA. Additional analyses showed that at least one integrated copy in each cell line retained an intact gpt gene and flanking SV40 sequences required for expression of xanthine-guanine phosphoribosyltransferase. Most cell lines contained pSV2 sequences which had integrated with partial sequence duplication. Upon fusion with COS-1 cells, a simian cell line permissive for autonomous pSV2 replication, most gpt-transformed cell lines produced low-molecular-weight DNA molecules related to pSV2. The majority of these replicating DNAs were indistinguishable from the original transfecting plasmid in both size and restriction enzyme cleavage pattern. In addition, the recovered DNA molecules were able to confer ampicillin resistance to E. coli and to transform mouse L cells and Gpt- E. coli to a Gpt+ phenotype. These studies indicate that all of the genetic information carried by this SV40-plasmid recombinant can be introduced into and retrieved from the genome of mammalian cells.  相似文献   

15.
pha-1, a selectable marker for gene transfer in C. elegans.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

16.
Retroviral vectors are commonly used in ex vivo gene therapy protocols. The structure of vectors basically consists of one gene of interest and a selectable marker gene. Fast selection without damaging cells is a critical step for ex vivo gene therapy protocols. Blasticidin S deaminase isolated from Bacillus cereus has a neutralizing action on the highly toxic antibiotic blasticidin S (BS). A commercially available gene coding for blasticidin S deaminase (bsr) when used to construct retroviral vectors, LBSN and LNSB, provided very low levels of BS deaminase activity, precluding their routine use in gene transfer experiments. However, with the introduction of specific mutations into the bsr gene based on the Kozak consensus sequences and deletion of a 5' untranslated sequence to generate bsrm, we were able to construct a retroviral vector encoding resistance to high doses of BS (at least 16-fold above the usual lethal dose in NIH3T3 cells), showing that bsrm/BS may provide a useful system for selection of transduced mammalian cells.  相似文献   

17.
R K Strair  M Towle    B R Smith 《Nucleic acids research》1990,18(16):4759-4762
Recombinant retroviruses have been utilized as vectors for gene transfer in model systems of gene therapy. Since many of these model systems require the transplantation of genetically modified primary cells it is important to devise methods which will allow the rapid and efficient selection for transplantation of only the cells which are capable of expressing high levels of the transferred gene. This report describes the use of beta-galactosidase as such a selectable marker. Bone marrow progenitors are infected with a recombinant retrovirus encoding beta-galactosidase. Using a fluorescence assay for beta-galactosidase we demonstrate that it is possible to use cell sorting to enrich for cells which will form bone marrow colonies that express high levels of beta-galactosidase. This rapid and non-toxic selection of bone marrow cells may facilitate attempts to achieve gene therapy in a variety of model systems.  相似文献   

18.
Limited thermostability of antibiotic resistance markers has restricted genetic research in the field of extremely thermophilic Archaea and bacteria. In this study, we used directed evolution and selection in the thermophilic bacterium Thermus thermophilus HB27 to find thermostable variants of a bleomycin-binding protein from the mesophilic bacterium Streptoalloteichus hindustanus. In a single selection round, we identified eight clones bearing five types of double mutated genes that provided T. thermophilus transformants with bleomycin resistance at 77 degrees C, while the wild-type gene could only do so up to 65 degrees C. Only six different amino acid positions were altered, three of which were glycine residues. All variant proteins were produced in Escherichia coli and analyzed biochemically for thermal stability and functionality at high temperature. A synthetic mutant resistance gene with low GC content was designed that combined four substitutions. The encoded protein showed up to 17 degrees C increased thermostability and unfolded at 85 degrees C in the absence of bleomycin, whereas in its presence the protein unfolded at 100 degrees C. Despite these highly thermophilic properties, this mutant was still able to function normally at mesophilic temperatures in vivo. The mutant protein was co-crystallized with bleomycin, and the structure of the binary complex was determined to a resolution of 1.5 A. Detailed structural analysis revealed possible molecular mechanisms of thermostabilization and enhanced antibiotic binding, which included the introduction of an intersubunit hydrogen bond network, improved hydrophobic packing of surface indentations, reduction of loop flexibility, and alpha-helix stabilization. The potential applicability of the thermostable selection marker is discussed.  相似文献   

19.
We cloned a gene for the iron sulfur protein (Ip) subunit from an edible mushroom, Lentinula edodes, and introduced a point mutation that confers carboxin resistance into it. The mutant gene successfully transformed L. edodes with high efficiency (9 transformants/2.5 microg vector DNA). Restriction enzyme-mediated integration (REMI) increased the transformation efficiency by about two-fold.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号