首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C., Chan, N. L., Gu, L., and Li, G. M. (2009) Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16, 869-875), suggesting the involvement of an additional component for (CTG)(n) HPR. To identify this activity, a functional in vitro HPR assay was used to screen partially purified HeLa nuclear fractions for their ability to stimulate (CTG)(n) HPR. We demonstrate here that the stimulating activity is the Werner syndrome protein (WRN). Although WRN contains both a 3'→5' helicase activity and a 3'→5' exonuclease activity, the stimulating activity was found to be the helicase activity, as a WRN helicase mutant failed to enhance (CTG)(n) HPR. Consistently, WRN efficiently unwound large (CTG)(n) hairpins and promoted DNA polymerase δ-catalyzed DNA synthesis using a (CTG)(n) hairpin as a template. We, therefore, conclude that WRN stimulates (CTG)(n) HPR on the template DNA strand by resolving the hairpin so that it can be efficiently used as a template for repair or replicative synthesis.  相似文献   

2.
Length-dependent energetics of (CTG)n and (CAG)n trinucleotide repeats   总被引:1,自引:0,他引:1  
Trinucleotide repeats are involved in a number of debilitating diseases such as myotonic dystrophy. Twelve to seventy-five base-long (CTG)n oligodeoxynucleotides were analysed using a combination of biophysical [UV-absorbance, circular dichroism and differential scanning calorimetry (DSC)] and biochemical methods (non-denaturing gel electrophoresis and enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature that was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed an unprecedented length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent (calorimetry) experiments. Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots and DSC profiles. Such behaviour is analysed in the framework of an intramolecular ‘branched-hairpin’ model, in which long CTG oligomers do not fold into a simple long hairpin–stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. We demonstrate that, for sequences ranging from 12 to 25 CTG repeats, an intramolecular structure with two loops is formed which we will call ‘bis-hairpin’. Similar results were also found for CAG oligomers, suggesting that this observation may be extended to various trinucleotide repeats-containing sequences.  相似文献   

3.
《Epigenetics》2013,8(4):416-420
Most epigenetic studies assess methylation of 5'-CpG-3' sites but recent evidence indicates that non-CpG cytosine methylation occurs at high levels in humans and other species. This is most prevalent at 5'-CHG-3', where H = A, C or T, and it preferentially occurs at 5'-CpA-3' and 5'-CpT-3' sites. With the goal of facilitating the detection of non-CpG methylation, the restriction endonucleases ApeKI, BbvI, EcoP15I, Fnu4HI, MwoI and TseI were assessed for their sensitivity to 5-methylcytosine at GpCpA, GpCpT, GpCpC or GpCpG sites, where methylation is catalyzed by the DNA 5-cytosine 5'-GpC-3' methyltransferase M.CviPI. We tested a variety of sequences including various plasmid-based sites, a cloned disease-associated (CAG)83?(CTG)83 repeat and in vitro synthesized tracts of only (CAG)500?(CTG)500 or (CAG)800?(CTG)800. The repeat tracts are enriched for the preferred CpA and CpT motifs. We found that none of the tested enzymes can cleave their recognition sequences when they are 5'-GpC-3' methylated. A genomic site known to convert its non-CpG methylation levels upon C2C12 differentiation was confirmed through the use of these enzymes. These enzymes can be useful in rapidly and easily determining the most common non-CpG methylation status in various sequence contexts, as well as at expansions of (CAG)n?(CTG)n repeat tracts associated with diseases like myotonic dystrophy and Huntington disease.  相似文献   

4.
Most epigenetic studies assess methylation of 5′-CpG-3′ sites but recent evidence indicates that non-CpG cytosine methylation occurs at high levels in humans and other species. This is most prevalent at 5′-CHG-3′, where H = A, C or T, and it preferentially occurs at 5′-CpA-3′ and 5′-CpT-3′ sites. With the goal of facilitating the detection of non-CpG methylation, the restriction endonucleases ApeKI, BbvI, EcoP15I, Fnu4HI, MwoI and TseI were assessed for their sensitivity to 5-methylcytosine at GpCpA, GpCpT, GpCpC or GpCpG sites, where methylation is catalyzed by the DNA 5-cytosine 5′-GpC-3′ methyltransferase M.CviPI. We tested a variety of sequences including various plasmid-based sites, a cloned disease-associated (CAG)83•(CTG)83 repeat and in vitro synthesized tracts of only (CAG)500•(CTG)500 or (CAG)800•(CTG)800. The repeat tracts are enriched for the preferred CpA and CpT motifs. We found that none of the tested enzymes can cleave their recognition sequences when they are 5′-GpC-3′ methylated. A genomic site known to convert its non-CpG methylation levels upon C2C12 differentiation was confirmed through the use of these enzymes. These enzymes can be useful in rapidly and easily determining the most common non-CpG methylation status in various sequence contexts, as well as at expansions of (CAG)n•(CTG)n repeat tracts associated with diseases like myotonic dystrophy and Huntington disease.Key words: non-CpG methylation, CpG methylation, 5-methylcytosine, trinucleotide repeats, ApeKI, BbvI, EcoP151, Fnu4HI, MwoI and TseI  相似文献   

5.
The expansion of trinucleotide repeats has been implicated in 17 neurological diseases to date. Factors leading to the instability of trinucleotide repeat sequences have thus been an area of intense interest. Certain genes involved in mismatch repair, recombination, nucleotide excision repair, and replication influence the instability of trinucleotide repeats in both Escherichia coli and yeast. Using a genetic assay for repeat deletion in E. coli, the effect of mutations in the recA, recB, and lexA genes on the rate of deletion of (CTG)n.(CAG)n repeats of varying lengths were examined. The results indicate that mutations in recA and recB, which decrease the rate of recombination, had a stabilizing effect on (CAG)n.(CTG)n repeats decreasing the high rates of deletion seen in recombination proficient cells. Thus, recombination proficiency correlates with high rates of genetic instability in triplet repeats. Induction of the SOS system, however, did not appear to play a significant role in repeat instability, nor did the presence of triplet repeats in cells turn on the SOS response. A model is suggested where deletion during exponential growth may result from attempts to restart replication when paused at triplet repeats.  相似文献   

6.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving </=10 repeats per slippage, which appear as bent/kinked DNA molecules, and those involving >10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures.  相似文献   

7.
Model building and molecular mechanics studies have been carried out to examine the potential structures for d(GGC/GCC)5 and d(CAG/CTG)5 that might relate to their biological function and association with triplet repeat expansion diseases. Model building studies suggested that hairpin and quadruplex structures could be formed with these repeat sequences. Molecular mechanics studies have demonstrated that the hairpin and hairpin dimer structures of triplet repeat sequences formed by looping out of the two strands are as favourable as the corresponding B-DNA type hetero duplex structures. Further, at high salt condition, Greek key type quadruplex structures are energetically comparable with hairpin dimer and B-DNA type duplex structures. All tetrads in the quadruplex structures are well stacked and provide favourable stacking energy values. Interestingly, in the energy minimized hairpin dimer and Greek key type quadruplex structures, all the bases even in the non-G tetrads are cyclically hydrogen bonded, even though the A, C and T-tetrads were not hydrogen bonded in the starting structures.  相似文献   

8.
Summary

Highly polymorphic DNA triplet repeats, (CAG)n, are located inside the first exon of the Huntington's disease gene. Inordinate expansion of this repeat is correlated with the onset and progression of the disease. NMR spectroscopy, gel electrophoresis, digestion by single-strand specific PI enzyme, and in vitro replication assay have been used to investigate the structural basis of (CAG)n expansion. Nondenaturing gel electrophoresis and ID 1H NMR studies of (CAG)5 and (CAG)6 reveal the presence of hairpins and mismatched duplexes as the major and minor populations respectively. However, at high DNA concentrations (i.e., 1.0–2.0 mM that is typically required for 2D NMR experiments) both (CAG)5 and (CAG)6 exist predominantly in mismatched duplex forms. Mismatched duplex structures of (CAG)5and (CAG)6 are useful, because they adequately model the stem of the biologically relevant hairpins formed by (CAG).,. We, therefore, performed detailed NMR spectroscopic studies on the duplexes of (CAG)5 and (CAG)6. We also studied a model duplex, (CGCAGCG)2 that contains the underlined building block of the duplex. This duplex shows the following structural characteristics: (i) all the nucleotides are in (C2′-endo, anti) conformations, (ii) mismatched A?A base pairs are flanked by two Watson-Crick G?C base pairs and (iii) A?A base pairs are stably stacked (and intra-helical) and are formed by a single N6-H—N1 hydrogen bond. The nature of A?A pairing is confirmed by temperature-dependent HMQC and HMQC-NOESY experiments on the [(CA*G)5]2 duplex where the adenines are 15N-labeled at N6. Temperature-and pH-dependent imino proton spectra, nondenaturing electrophoresis, and PI digestion data demonstrate that under a wide range of solution conditions longer (CAG)n repeats (n>10) exist exclusively in hairpin conformation with two single-stranded loops. Finally, an in vitro replication assay with (CAG)821 inserts in the Ml3 single-stranded DNA templates shows a replication bypass for the (CAG)21 insert but not for the (CAG)8 insert in the template. This demonstrates that for a sufficiently long insert (n=21 in this case), a hairpin is formed by the (CAG)., even in presence of its complementary strand. This observation implies that the formation of hairpin by the (CAG)n may cause slippage during replication and thus may explain the observed length polymorphism.  相似文献   

9.
Trinucleotide repeat (TNR) instability is of interest because of its central role in human diseases such as Huntington’s and its unique genetic features. One distinctive characteristic of TNR instability is a threshold, defined as a minimal repeat length that confers frequent mutations. While thresholds are well established, important risk determinants for disease-causing mutations, their mechanistic analysis has been delayed by the lack of suitably tractable experimental systems. In this study, we directly compared for the first time three DNA elements—TNR sequence, purity and flanking sequence—all of which are suggested in the literature to contribute to thresholds. In a yeast model system, we find that CAG repeats require a substantially longer threshold to contract than CTG tracts, indicating that the lagging template repeat sequence helps determine the threshold. In contrast, ATG interruptions within a CTG run do not inhibit contractions via a threshold mechanism, but by altering the likelihood of forming a hairpin intermediate. The presence of a GC-rich flanking sequence, similar to a haplotype found in some Huntington’s patients, does not detectably alter expansions of Okazaki fragment CTG tracts, suggesting no role for this flanking sequence on thresholds. Together these results help better define TNR thresholds by delineating sequence elements that modulate instability.  相似文献   

10.
Genetic instabilities in (CTG.CAG) repeats occur by recombination.   总被引:11,自引:0,他引:11  
The expansion of triplet repeat sequences (TRS) associated with hereditary neurological diseases is believed from prior studies to be due to DNA replication. This report demonstrates that the expansion of (CTG.CAG)(n) in vivo also occurs by homologous recombination as shown by biochemical and genetic studies. A two-plasmid recombination system was established in Escherichia coli with derivatives of pUC19 (harboring the ampicillin resistance gene) and pACYC184 (harboring the tetracycline resistance gene). The derivatives contained various triplet repeat inserts ((CTG.CAG), (CGG.CCG), (GAA.TTC), (GTC.GAC), and (GTG.CAC)) of different lengths, orientations, and extents of interruptions and a control non-repetitive sequence. The availability of the two drug resistance genes and of several unique restriction sites on the plasmids enabled rigorous genetic and biochemical analyses. The requirements for recombination at the TRS include repeat lengths >30, the presence of CTG.CAG on both plasmids, and recA and recBC. Sequence analyses on a number of DNA products isolated from individual colonies directly demonstrated the crossing-over and expansion of the homologous CTG.CAG regions. Furthermore, inversion products of the type [(CTG)(13)(CAG)(67)].[(CTG)(67)(CAG)(13)] were isolated as the apparent result of "illegitimate" recombination events on intrahelical pseudoknots. This work establishes the relationships between CTG.CAG sequences, multiple fold expansions, genetic recombination, formation of new recombinant DNA products, and the presence of both drug resistance genes. Thus, if these reactions occur in humans, unequal crossing-over or gene conversion may also contribute to the expansions responsible for anticipation associated with several hereditary neurological syndromes.  相似文献   

11.
The mechanism of trinucleotide repeat expansion, an important cause of neuromuscular and neurodegenerative diseases, is poorly understood. We report here on the study of the role of flap endonuclease 1 (Fen1), a structure-specific nuclease with both 5' flap endonuclease and 5'-3' exonuclease activity, in the somatic hypermutability of the (CTG)(n)*(CAG)(n) repeat of the DMPK gene in a mouse model for myotonic dystrophy type 1 (DM1). By intercrossing mice with Fen1 deficiency with transgenics with a DM1 (CTG)(n)*(CAG)(n) repeat (where 104n110), we demonstrate that Fen1 is not essential for faithful maintenance of this repeat in early embryonic cleavage divisions until the blastocyst stage. Additionally, we found that the frequency of somatic DM1 (CTG)(n)*(CAG)(n) repeat instability was essentially unaltered in mice with Fen1 haploinsufficiency up to 1.5 years of age. Based on these findings, we propose that Fen1, despite its role in DNA repair and replication, is not primarily involved in maintaining stability at the DM1 locus.  相似文献   

12.
The mechanism of disease-associated (CTG)*(CAG) expansion may involve DNA replication slippage, replication direction, Okazaki fragment processing, recombination, or repair. A length-dependent bias for expansions is observed in humans affected by a trinucleotide repeat-associated disease. We developed an assay to test the effect of replication direction on (CTG)*(CAG) instabilities incurred during in vitro (SV40) DNA replication mediated by human cell extracts. This system recapitulates the bias for expansions observed in humans. Replication by HeLa cell extracts generated expansions and deletions that depended upon repeat tract length and the direction of replication. Templates with 79 repeats yielded predominantly expansions (CAG as lagging strand template) or predominantly deletions (CTG as lagging strand template). Templates containing 17 repeats were stable. Thus, replication direction determined the type of mutation. These results provide new insights into the orientation of replication effect upon repeat stability. This system will be useful in determining the contribution of specific human proteins to (CTG)*(CAG) expansions.  相似文献   

13.
Genetic recombination is a robust mechanism for expanding CTG.CAG triplet repeats involved in the etiology of hereditary neurological diseases (Jakupciak, J. P., and Wells, R. D. (1999) J. Biol. Chem. 274, 23468-23479). This two-plasmid recombination system in Escherichia coli with derivatives of pUC19 and pACYC184 was used to investigate the effect of triplet repeat orientation on recombination and extent of expansions; tracts of 36, 50, 80, and 36, 100, and 175 repeats in length, respectively, in all possible permutations of length and in both orientations (relative to the unidirectional replication origins) revealed little or no effect of orientation of expansions. The extent of expansions was generally severalfold the length of the progenitor tract and frequently exceeded the combined length of the two tracts in the cotransformed plasmids. Expansions were much more frequent than deletions. Repeat tracts bearing two G-to-A interruptions (polymorphisms) within either 171- or 219-base pair tracts substantially reduced the expansions compared with uninterrupted repeat tracts of similar lengths. Gene conversion, rather than crossing over, was the recombination mechanism. Prior studies showed that DNA replication, repair, and tandem duplication also mediated genetic instabilities of the triplet repeat sequence. However, gene conversion (recombinational repair) is by far the most powerful expansion mechanism. Thus, we propose that gene conversion is the likely expansion mechanism for myotonic dystrophy, spinocerebellar ataxia type 8, and fragile X syndrome.  相似文献   

14.
(CTG)n.(CAG)n repeats undergo deletion at a high rate in plasmids in Escherichia coli in a process that involves RecA and RecB. In addition, DNA replication fork progression can be blocked during synthesis of (CTG)n.(CAG)n repeats. Replication forks stalled at (CTG)n.(CAG)n repeats may be rescued by replication restart that involves recombination as well as enzymes involved in replication and DNA repair, and this process may be responsible for the high rate of repeat deletion in E. coli. To test this hypothesis (CAG)n.(CTG)n deletion rates were measured in several E. coli strains carrying mutations involved in replication restart. (CAG)n.(CTG)n deletion rates were decreased, relative to the rates in wild type cells, in strains containing mutations in priA, recG, ruvAB, and recO. Mutations in priB and priC resulted in small reductions in deletion rates. In a recF strain, rates were decreased when (CAG)n comprised the leading template strand, but rates were increased when (CTG)n comprised the leading template. Deletion rates were increased slightly in a recJ strain. The mutational spectra for most mutant strains were altered relative to those in parental strains. In addition, purified PriA and RecG proteins showed unexpected binding to single-stranded, duplex, and forked DNAs containing (CAG)n and/or (CTG)n loop-outs in various positions. The results presented are consistent with an interpretation that the high rates of trinucleotide repeat instability observed in E. coli result from the attempted restart of replication forks stalled at (CAG)n.(CTG)n repeats.  相似文献   

15.
Polymorphism of highly polymorphic triplet repeats CTG of the 3"-untranslated region of the myotonin protein kinase gene and CAG of the genes associated with dentatorubral-pallidoluysian atrophy (DRPLA, or Hew River syndrome) and spinocerebellar ataxia type 1 (SCA1) was analyzed in several ethnic populations of Russia. A difference in allele spectra of the three genes was demonstrated for populations differing in ethnic origin.  相似文献   

16.
Divalent metal ions are essential for maintaining functional states of the DNA molecule. Their participation in DNA structure is modulated by the base sequence and varies depending on the nature of the ion. The present investigation addresses the interaction of Ca2+ ions with a tandem repeat of two CA dinucleotides, (CA)2/(TG)2. The binding of Ca2+ to the repeat is monitored by nuclear magnetic resonance (NMR) spectroscopy using chemical shift mapping. Parallel experiments monitor binding of Mg2+ ions to the repeat as well as binding of each ion to a DNA duplex in which the (CA)2/(TG)2 repeat is eliminated. The results reveal that the direction and the magnitude of chemical shift changes induced by Ca2+ ions in the NMR spectra of the repeat are different from those induced by Mg2+ ions. The differences between the two cations are significantly diminished by the elimination of the (CA)2/(TG)2 repeat. These findings suggest a specific interaction of Ca2+ ions with the (CA)2/(TG)2 motif. The specificity of the interaction resides in the two A-T base pairs of the repeat, and it involves the major groove of the first A-T base pair and both grooves of the second A-T base pair.  相似文献   

17.
Zhang T  Huang J  Gu L  Li GM 《DNA Repair》2012,11(2):201-209
Expansion of CAG/CTG trinucleotide repeats (TNRs) in humans is associated with a number of neurological and neurodegenerative disorders including Huntington's disease. Increasing evidence suggests that formation of a stable DNA hairpin within CAG/CTG repeats during DNA metabolism leads to TNR instability. However, the molecular mechanism by which cells recognize and repair CAG/CTG hairpins is largely unknown. Recent studies have identified a novel DNA repair pathway specifically removing (CAG)(n)/(CTG)(n) hairpins, which is considered a major mechanism responsible for TNR instability. The hairpin repair (HPR) system targets the repeat tracts for incisions in the nicked strand in an error-free manner. To determine the substrate spectrum of the HPR system and its ability to process smaller hairpins, which may be the intermediates for CAG/CTG expansions, we constructed a series of CAG/CTG hairpin heteroduplexes containing different numbers of repeats (from 5 to 25) and examined their repair in human nuclear extracts. We show here that although repair efficiencies differ slightly among these substrates, removal of the individual hairpin structures all involve endonucleolytic incisions within the repeat tracts in the nicked DNA strand. Analysis of the repair intermediates defined specific incision sites for each substrate, which were all located within the repeat regions. Mismatch repair proteins are not required for, nor do they inhibit, the processing of smaller hairpin structures. These results suggest that the HPR system ensures CAG/CTG stability primarily by removing various sizes of (CAG)(n)/(CTG)(n) hairpin structures during DNA metabolism.  相似文献   

18.
(CAG)(n)*(CTG)(n) expansion is associated with many neurodegenerative diseases. Repeat instability has been extensively studied in bacterial plasmids, where repeats undergo deletion at high rates. We report an assay for (CAG)(n)*(CTG)(n) deletion from the chloramphenicol acetyltransferase gene integrated into the Escherichia coli chromosome. In strain AB1157, deletion rates for 25-60 (CAG) x (CTG) repeats integrated in the chromosome ranged from 6.88 x 10(-9) to 1.33 x 10(-10), or approximately 6,300 to 660,000-fold lower than in plasmid pBR325. In contrast to the situation in plasmids, deletions occur at a higher rate when (CTG)(43), rather than (CAG)(43), comprised the leading template strand, and complete rather than partial deletions were the predominant mutation observed. Repeats were also stable on long term growth following multiple passages through exponential and stationary phase. Mutations in priA and recG increased or decreased deletion rates, but repeats were still greatly stabilized in the chromosome. The remarkable stability of (CAG)(n) x (CTG)(n) repeats in the E. coli chromosome may result from the differences in the mechanisms for replication or the probability for recombination afforded by a high plasmid copy number. The integration of (CAG)(n) x (CTG)(n) repeats into the chromosome provides a model system in which the inherent stability of these repeats reflects that in the human genome more closely.  相似文献   

19.
The influences of double-strand breaks (DSBs) within a triplet repeat sequence on its genetic instabilities (expansions and deletions) related to hereditary neurological diseases was investigated. Plasmids containing 43 or 70 CTG.CAG repeats or 43 CGG.CCG repeats were linearized in vitro near the center of the repeats and were transformed into parental, RecA-dependent homologous recombination-deficient, or RecBC exonuclease-deficient Escherichia coli. The resulting repair process considerably increased deletion of the repeating sequence compared to the circular DNA controls. Unexpectedly, the orientation of the insert relative to the unidirectional ColE1 origin of replication affected the amount of instability generated during the repair of the DSB. When the CTG strand was the template for lagging-strand synthesis, instability was increased, most markedly in the recA- strain. Results indicated that RecA and/or RecBC might play a role in DSB repair within the triplet repeat. Altering the length, orientation, and sequence composition of the triplet repeat suggested an important role of DNA secondary structures during repair intermediates. Hence, we hypothesize that ColE1 origin-dependent replication was involved during the repair of the DSB. A model is presented to explain the mechanisms of the observed genetic instabilities.  相似文献   

20.
At least 15 human diseases are caused by the instability of gene-specific (CTG).(CAG) repeats. The precise mechanism of instability remains unknown, though bacterial and yeast models have suggested a role for aberrant repair of double-strand breaks (DSBs). Using an established primate DSB repair system, we have investigated the fidelity of repair of a DSB within a (CTG).(CAG) repeat tract. DSB repair substrates were generated from plasmids that are stably replicated in their circular form, permitting us to highlight the effects of DSB repair on repeat stability and minimize the contribution of replication. DSBs were introduced into repeat-containing plasmids using a unique BsmI site, such that the entire repeat tract comprised one free end of the linearized plasmid. Substrates containing 17, 47, and 79 repeats, in either their linear duplex form or containing slipped structures (out-of-register interstrand mispairings at repeat sequences), were transiently transfected into primate cells. Linearized plasmids with repeats were repaired with mildly reduced efficiency, while the presence of slipped structures considerably reduced repair efficiency. The repaired products were characterized for alterations within the repeat tract and flanking sequence. DSB repair induced predominantly repeat deletions. Notably, a polarized/directional deletion effect was observed, in that the repetitive end of the DSB was preferentially removed. This phenomenon was dramatically enhanced when slipped structures were present within the repeat tract, providing the first evidence for error-prone processing of slipped-strand structures. These results suggest the existence of primate nuclease activities that are specific for (CTG).(CAG) repeats and the structures they form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号