首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathophysiology of TallyHo mouse, a recently established animal model for type 2 diabetes mellitus, was analyzed at prediabetic state to examine the inherent defects which contribute to the development of diabetes. At 4 weeks of age, the TallyHo mice already revealed glucose intolerance while their peripheral tissues exhibited normal insulin sensitivity. On the other hand, decreased plasma insulin concentration was observed with little differences in pancreatic insulin contents, indicating the impaired insulin secretion. Such defect, however, was not found in the isolated islets, which suggests a role of endocrine factor in impaired insulin secretion of TallyHo mice. Treatment of leptin inhibited the glucose-stimulated insulin secretion from the isolated islets of TallyHo mice, while in vivo administration of anti-leptin antibody lowered plasma glucose concentration with increased insulin level in TallyHo mice. Expression of glucokinase mRNA was decreased both in whole pancreas and leptin treated islets of TallyHo mice compared with whole pancreas in C57BL/6 mice and untreated islets of TallyHo mice, respectively. These results suggest that elevated plasma leptin can, through the inhibition of insulin secretion, induce glucose intolerance in TallyHo mice.  相似文献   

2.
3.
Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress.  相似文献   

4.
Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes.  相似文献   

5.
Insulin is released from the pancreas in pulses with a period of ∼ 5 min. These oscillatory insulin levels are essential for proper liver utilization and perturbed pulsatility is observed in type 2 diabetes. What coordinates the many islets of Langerhans throughout the pancreas to produce unified oscillations of insulin secretion? One hypothesis is that coordination is achieved through an insulin-dependent negative feedback action of the liver onto the glucose level. This hypothesis was tested in an in vitro setting using a microfluidic system where the population response from a group of islets was input to a model of hepatic glucose uptake, which provided a negative feedback to the glucose level. This modified glucose level was then delivered back to the islet chamber where the population response was again monitored and used to update the glucose concentration delivered to the islets. We found that, with appropriate parameters for the model, oscillations in islet activity were synchronized. This approach demonstrates that rhythmic activity of a population of physically uncoupled islets can be coordinated by a downstream system that senses islet activity and supplies negative feedback. In the intact animal, the liver can play this role of the coordinator of islet activity.  相似文献   

6.
Many nuclear and cytoplasmic proteins are O-glycosylated on serine or threonine residues with the monosaccharide beta-N-acetylglucosamine, which is then termed O-linked N-acetylglucosamine (O-GlcNAc). It has been shown that abnormal O-GlcNAc modification (O-GlcNAcylation) of proteins is one of the causes of insulin resistance and diabetic complications. In this study, in order to examine the relationship between O-GlcNAcylation of proteins and glucose-stimulated insulin secretion in noninsulin-dependent type (type 2) diabetes, we investigated the level of O-GlcNAcylation of proteins, especially that of PDX-1, and the expression of O-GlcNAc transferase in Goto-Kakizaki (GK) rats, which are an animal model of type-2 diabetes. By immunoblot and immunohistochemical analyses, the expression of O-GlcNAc transferase protein and O-GlcNAc-modified proteins in whole pancreas and islets of Langerhans of 15-week-old diabetic GK rats and nondiabetic Wistar rats was examined. The expression of O-GlcNAc transferase at the protein level and O-GlcNAc transferase activity were increased significantly in the diabetic pancreas and islets. The diabetic pancreas and islets also showed an increase in total cellular O-GlcNAc-modified proteins. O-GlcNAcylation of PDX-1 was also increased. In the diabetic GK rats, significant increases in the immunoreactivities of both O-GlcNAc and O-GlcNAc transferase were observed. PUGNAc, an inhibitor of O-GlcNAcase, induced an elevation of O-GlcNAc level and a decrease of glucose-stimulated insulin secretion in isolated islets. These results indicate that elevation of the O-GlcNAcylation of proteins leads to deterioration of insulin secretion in the pancreas of diabetic GK rats, further providing evidence for the role of O-GlcNAc in the insulin secretion.  相似文献   

7.
Insulin is released from the pancreas in pulses with a period of ∼ 5 min. These oscillatory insulin levels are essential for proper liver utilization and perturbed pulsatility is observed in type 2 diabetes. What coordinates the many islets of Langerhans throughout the pancreas to produce unified oscillations of insulin secretion? One hypothesis is that coordination is achieved through an insulin-dependent negative feedback action of the liver onto the glucose level. This hypothesis was tested in an in vitro setting using a microfluidic system where the population response from a group of islets was input to a model of hepatic glucose uptake, which provided a negative feedback to the glucose level. This modified glucose level was then delivered back to the islet chamber where the population response was again monitored and used to update the glucose concentration delivered to the islets. We found that, with appropriate parameters for the model, oscillations in islet activity were synchronized. This approach demonstrates that rhythmic activity of a population of physically uncoupled islets can be coordinated by a downstream system that senses islet activity and supplies negative feedback. In the intact animal, the liver can play this role of the coordinator of islet activity.  相似文献   

8.
A proteomic analysis of islets was undertaken to determine the protein constituents of normal adult mouse islets. Unexpectedly, we identified several islet proteins that are associated with the pathogenesis of Alzheimer's disease. Some of these proteins had chaperone activity that is integral to proper protein folding. This group includes GRP78, valosin-containing protein, calreticulin, protein disulfide isomerase, DnaK, HSP70, HSP60, and TCP-1. Additionally, neuronal proteins key to coordinated neuronal guidance and survival were also identified in islets. This group includes proprotein convertase subtilisin, collapsin response mediator protein 2, ubiquinol-cytochrome c reductase core protein, L-3-hydroxyacyl-Coenzyme A dehydrogenase, glutamine synthetase, peroxiredoxin, and secretogogin. An important subset of the proteins identified here has not been reported previously in pancreatic islets. Abnormal activity of these proteins in brain may contribute to the pathogenesis of Alzheimer's disease, a neurodegenerative condition characterized by focal amyloid deposits with neurofibrillary tangles. The putative role of these proteins in Alzheimer's pathogenesis is intriguing given the possible clinical relationship and pathological similarity of Alzheimer's disease to type 2 diabetes. These findings have therefore led to the hypothesis that these proteins may also play a role in type 2 diabetes.  相似文献   

9.
Human islet transplantation seems to be a very promising clinical procedure for patients with type I diabetes mellitus. The aim of our study was to investigate the influence of in situ intravascular flushing with University of Wisconsin (UW) solution and intraductal collagenase injection at the time of pancreas procurement on the isolated islets and exocrine tissue injury. Our experiments indicated that in situ perfusion with the UW solution has a beneficial effect on pancreatic islets and intraductal distention results in an increase in the concentration of pancreatic enzymes released into the cold preservation solution during ischemic conditions. Cold ischemia reduced islet yield, but pancreas perfusion with the UW solution showed better ischemic tolerance of isolated islets during glucose static incubation. We conclude that intravascular pancreas flushing has a crucial effect on recovery and yield of pancreatic islets and protects against exocrine tissue injury.  相似文献   

10.
Metallothioneins (MTs) are intracellular low-molecular-weight, cysteine-rich proteins with potent metal-binding and redox functions, but with limited membrane permeativity. The aim of this study was to investigate whether we could enhance delivery of MT-1 to pancreatic islets or β cells in vitro and in vivo. The second goal was to determine whether increased MT-1 could prevent cellular toxicity induced by high glucose and free fatty acids in vitro (glucolipotoxicity) and ameliorate the development of diabetes induced by streptozotocin in mice or delay the development of diabetes by improving insulin secretion and resistance in the OLETF rat model of type 2 diabetes. Expression of HIV-1 Tat-MT-1 enabled efficient delivery of MT into both INS-1 cells and rat islets. Intracellular MT activity increased in parallel with the amount of protein delivered to cells. The formation of reactive oxygen species, glucolipotoxicity, and DNA fragmentation due to streptozotocin decreased after treating pancreatic β cells with Tat-MT in vitro. Importantly, in vivo, intraperitoneal injection resulted in delivery of the Tat-MT protein to the pancreas as well as liver, muscle, and white adipose tissues. Multiple injections increased radical-scavenging activity, decreased apoptosis, and reduced endoplasmic reticulum stress in the pancreas. Treatment with Tat-MT fusion protein delayed the development of diabetes in streptozotocin-induced mice and improved insulin secretion and resistance in OLETF rats. These results suggest that in vivo transduction of Tat-MT may offer a new strategy to protect pancreatic β cells from glucolipotoxicity, may improve insulin resistance in type 2 diabetes, and may have a protective effect in preventing islet destruction in type 1 diabetes.  相似文献   

11.
The 150-kDa oxygen-regulated protein (ORP150) is a member of glucose-regulated proteins (GRPs), which are induced by stressful conditions such as oxygen or glucose deprivation. Here we investigated the highly abundant expression of ORP150 in mouse pancreas and its relationship with insulin secretion. Immunohistochemical analysis revealed that ORP150 expression was restricted to islets, especially to beta cells. The beta cell-specific expression was also observed in a mouse insulinoma cell line, MIN6, which secretes insulin in response to increased glucose concentration. Furthermore, ORP150 in islets dramatically diminished by fasting, concomitant with reduction of the serum insulin level. These results strongly suggest the role for ORP150 in insulin secretion.  相似文献   

12.
A new diabetic strain of rat (WBN/Kob)   总被引:1,自引:0,他引:1  
A new, spontaneously occurring diabetic syndrome has been observed in the aged males of an inbred strain of Wistar rats, WBN/Kob. The main clinical sign, glycosuria, was first detected at about 60 weeks of age, and thereafter some animals developed hyperlipidaemia and gradual emaciation. Prior to the onset of glucosuria, male rats showed impaired glucose tolerance after a glucose load at 21 weeks of age. The histopathologic lesions of the pancreas in the diabetic males consisted of multifocal fibrosis, decreased in number and size of islets and atrophy of exocrine tissue. Multifocal inflammatory foci of varying stages were the main pancreatic lesion in prediabetic male rats. This inflammatory change was detected even in 12-week-old rats and tended to occur around the islets. Therefore focal fibrosis and the decrease in the number and size of islets were considered to result from post-inflammatory scarring. The maturity-onset of this syndrome and the impaired glucose tolerance in younger animals suggested that diabetes mellitus of this rat strain is insulin-independent type II. However, the histological lesions of the pancreas were somewhat different from previous reports of both type I and II diabetes mellitus in man and animals.  相似文献   

13.
Oxygen free radicals have been implicated in beta-cell dysfunction and apoptosis associated with type 1 and type 2 diabetes mellitus. The roles of free radicals in diabetes have thus far been defined indirectly by monitoring oxidative tissue damage and the effects of antioxidants, free radical scavengers, and overexpression of superoxide dismutase. We employed the superoxide-mediated oxidation of hydroethidine to ethidium to dynamically and directly assess the relative rates of mitochondrial superoxide anion generation in isolated islets in response to glucose stimulation. Superoxide content of isolated islets increased in response to glucose stimulation. We next compared the oxyradical levels in Zucker lean control and Zucker diabetic fatty rat islets by digital imaging microfluorometry. The superoxide content of Zucker diabetic fatty islets was significantly higher than Zucker lean control islets under resting conditions, relatively insensitive to elevated glucose concentrations, and correlated temporally with a decrease in glucose-induced hyperpolarization of the mitochondrial membrane. Importantly, superoxide levels were elevated in islets from young, pre-diabetic Zucker diabetic fatty animals. Overproduction of superoxide was associated with perturbed mitochondrial morphology and may contribute to abnormal glucose signaling found in the Zucker diabetic fatty model of type 2 diabetes mellitus.  相似文献   

14.
We evaluated whether ramipril, one of long-acting ACEIs, has a direct effect on pancreas islets in animal model of type 2 diabetes. OLETF rats were treated with ramipril for 24 weeks. We assessed the body weight, glucose tolerance, and the amount of islet fibrosis. RT-PCR and Western blot analysis of transforming growth factor-beta with its downstream signals were performed from the pancreas. Ramipril treatment remarkably reduced weight gain and the area under the curve of glucose. Islet fibrosis and the expression of TGF-beta with its downstream signal molecules were significantly reduced in the pancreas of ramipril-treated group than in control and paired-feeding group. These beneficial effects of ramipril might be related to the downregulation of TGF-beta and its downstream signals in OLETF rats. To our knowledge, this is the first report suggesting the potential effect of ramipril on the prevention of islet destruction by fibrosis in the animal model of type 2 diabetes mellitus.  相似文献   

15.
The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (~p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator 1 and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.  相似文献   

16.
Completion of the human genome sequence has provided scientists with powerful resources with which to explore the molecular events associated with disease states such as diabetes. Understanding the relative levels of expression of gene products, especially of proteins, and their post-translational modifications will be critical. However, though the pancreatic islets play a key role in glucose homeostasis, global protein expression data in human are decidedly lacking. We here report the two-dimensional protein map and database of human pancreatic islets. A high level of reproducibility was obtained among the gels and a total of 744 protein spots were detected. We have successfully identified 130 spots corresponding to 66 different protein entries and generated a reference map of human islets. The functionally characterized proteins include enzymes, chaperones, cellular structural proteins, cellular defense proteins, signaling molecules, and transport proteins. A number of proteins identified in this study (e.g., annexin A2, elongation factor 1-alpha 2, histone H2B.a/g/k, heat shock protein 90 beta, heat shock 27 kDa protein, cyclophilin B, peroxiredoxin 4, cytokeratins 7, 18, and 19) have not been previously described in the database of mouse pancreatic islets. In addition, altered expression of several proteins, like GRP78, GRP94, PDI, calreticulin, annexin, cytokeratins, profilin, heat shock proteins, and ORP150 have been associated with the development of diabetes. The data presented in this study provides a first-draft reference map of the human islet proteome, that will pave the way for further proteome analysis of pancreatic islets in both healthy and diabetic individuals, generating insights into the pathophysiology of this condition.  相似文献   

17.
According to the glucose toxicity hypothesis, hyperglycemia contributes to defective beta-cell function in type 2, non-insulin-dependent diabetes mellitus. This concept is supported by substantial data in rodent models of diabetes. However, the ability of glucose to stimulate the accumulation of insulin mRNA, a critical feature of normal beta-cell physiology, has not been investigated in in vivo models of chronic hyperglycemia. The aim of this study was to determine whether glucose-induced insulin mRNA accumulation is impaired in the neonatal streptozotocin-treated rat (n0-STZ rat), a model of non-obese, non-insulin-dependent diabetes mellitus. Islets of Langerhans isolated from n0-STZ and control rats were cultured for 24 h in the presence of 2.8 or 16.7 mmol/L glucose, and insulin mRNA levels were measured by Northern analysis. Insulin mRNA levels were increased more than twofold by glucose in control islets. In contrast, no significant effect of glucose was found on insulin mRNA levels in n0-STZ islets. We conclude that insulin gene regulation by glucose is impaired in n0-STZ rat islets.  相似文献   

18.
Type 1 diabetes (T1D) and type 2 diabetes (T2D) are associated with functional beta cell loss due to ongoing inflammation. Despite shared similarities, T1D is an autoimmune disease with evidence of autoantibody production, as well as a role for exocrine pancreas involvement. Our hypothesis is that differential protein expression occurs in disease stratified pancreas tissues and regulated proteins from endocrine and exocrine tissues are potential markers of disease and potential therapeutic targets. The study objective was to identify novel proteins that distinguish the pancreas from donors with T1D from the pancreas from patients with T2D, or autoantibody positive non-diabetic donors. Detailed quantitative comprehensive proteomic analysis was applied to snap frozen human pancreatic tissue lysates from organ donors without diabetes, with T1D-associated autoantibodies in the absence of diabetes, with T1D, or with T2D. These disease-stratified human pancreas tissues contain exocrine and endocrine tissues (with dysfunctional islets) in the same microenvironment. The expression profiles of several of the proteins were further verified by western blot. We identified protein panels that are significantly and uniquely upregulated in the three disease-stratified pancreas tissues compared to non-disease control tissues. These proteins are involved in inflammation, metabolic regulation, and autoimmunity, all of which are pathways linked to, and likely involved in, T1 and T2 diabetes pathogenesis. Several new proteins were differentially upregulated in prediabetic, T1D, and T2D pancreas. The results identify proteins that could serve as novel prognostic, diagnostic, and therapeutic tools to preserve functional islet mass in Type 1 Diabetes.  相似文献   

19.
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ~13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ~10 pmol·min(-1)·islet(-1). Our data suggest that impaired β-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.  相似文献   

20.
According to the "glucose toxicity" hypothesis, hyperglycemia contributes to defective beta-cell function in type 2, non-insulin-dependent diabetes mellitus. This concept is supported by substantial data in rodent models of diabetes. However, the ability of glucose to stimulate the accumulation of insulin mRNA, a critical feature of normal beta-cell physiology, has not been investigated in in vivo models with chronic hyperglycemia. The aim of this study was to determine whether glucose-induced insulin mRNA accumulation is impaired in the neonatal streptozotocin-treated rat (n0-STZ rat), a model of non-obese, non-insulin-dependent diabetes mellitus. Islets of Langerhans isolated from n0-STZ and control rats were cultured for 24 h in the presence of 2.8 or 16.7 mmol/l glucose, and insulin mRNA levels were measured by Northern analysis. Insulin mRNA levels were increased more than twofold by glucose in control islets. In contrast, no significant effect of glucose was found on insulin mRNA levels in n0-STZ islets. We conclude that insulin gene regulation by glucose is impaired in n0-STZ rat islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号