首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to identify antigens of Trypanosoma cruzi (Brazil strain) to which antibodies are directed during the course of experimental Chagas' disease in C3H(He) (susceptible) and C57BL/6J (resistant) female mice. An extract of culture forms of the parasite was subjected to SDS-polyacrylamide gel electrophoresis, transferred to a solid phase matrix of nitrocellulose and used as antigens to detect antibodies in the sera of infected mice. Reactive antibodies were detected using an avidin-biotin peroxidase test. Two antigens were consistently detected with sera of normal, uninfected C57BL/6 and C3H(He) mice (51,000 and 44,000; and 53,000 and 46,000 daltons, respectively). A total of 32 antigens with m.w. of 230,000 to 25,000 daltons reacted with antibodies in sera of C3H mice infected for 25 days. Both the number of antigens detected and intensity of reactions increased with time of infection in C3H mice. An early (day 5), rapid, although weak response was observed to antigens of 85,000, 56,000, 53,000, 46,000 and 41,000 daltons. Throughout infection intense responses to antigens of 75,000, 67,000, 45,000, 41,000 and 36,000 daltons were detected. A similar number of components (a total of 34) with m.w. of 210,000 to 20,000 daltons were detected as being antigenic during the course of T. cruzi infection of C57BL/6 mice. A high number of antigens (25) was observed early in infection of C57BL/6 mice by day 10, including components with m.w. of 90,000, 85,000 and 70,000 daltons. Only minor changes were detected, however, after day 20 until day 120, when increases in the number of antigens and the intensity of certain reactions (e.g., antigens of 75,000, 46,000 and 26,000 daltons) were detected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Isotypic analysis of anti-parasite humoral responses of C57B1/6 and C3H (He) mice surviving acute Trypanosoma cruzi infection showed that both mouse strains demonstrate IgG1, IgG2a, IgG2b, and IgM enzyme-linked immunosorbent assay titers from days 21 to 300 of infection. Using the western blot technique to determine the antigen specificity of the isotypic responses, 100-day infected C3H mice showed strong IgG1, IgG2a, and IgG2b responses to many antigens, whereas C57B1/6 mice showed weak responses to fewer antigens. Isotype western blots showed that reactivity to the T. cruzi antigen of 75-77 kDa is present in the humoral response of day 21-infected mice that will survive and missing in those that will not survive. In general, surviving immunized C3H mice respond with IgG1, IgG2a, and IgG2b reactions to the 75-77-kDa and other antigens, whereas resistant B6 mice concentrate their anti-T. cruzi response in the IgG2b isotype to the 75-77-kDa antigen. Perhaps induction of ineffective antibody responses to nonprotective antigens is beneficial to the parasite and detrimental to the host.  相似文献   

3.
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-alpha) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-alpha levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-alpha, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-alpha+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-alpha treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-alpha-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-alpha treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.  相似文献   

4.
Explants of 13 different organs obtained from C3H/HEN, Swiss-Webster, and C57Bl/6 mice chronically infected with Trypanosoma cruzi (Y strain) were cocultivated with mouse embryo fibroblasts to determine the organs that contain T. cruzi during the chronic infection. Explant cultures frequently yielded T. cruzi as late as 12 months after infection. Spleen and skeletal muscle were most frequently positive; heart cultures were rarely positive in any mouse strain. C3H/HEN mice had significantly more cultures positive than Swiss-Webster mice, as expected from relative susceptibility of C3H/HEN mice to acute infection. In contrast, C57Bl/6 mice, relatively resistant to acute infection, had significantly more cultures positive at 12 months of infection than Swiss-Webster mice. Also, C57Bl/6 mice had a significant increase in the number of positive cultures at 12 months of infection compared to 6 months of infection. These results show that organisms can be recovered routinely from some tissues during the chronic infection, that murine susceptibility to infection should differentiate between acute and chronic infection, and that C57Bl/6 mice may lose control of infection during the chronic infection.  相似文献   

5.
The specific antibody responses were compared among susceptible (A/Sn), moderately susceptible (Balb/c) and resistant (C57 BL/10J) mice infected with Trypanosoma cruzi (Y strain). Sera obtained during the second week of infection recognized a surface trypomastigote antigen of apparent Mr 80 kDa while displaying complex reactivity to surface epimastigote antigens. Complex trypomastigote antigens recognition was detected around the middle of the third week of infection. No major differences were observed along the infection, among the three strains of mice, neither in the patterns of surface antigen recognition by sera, nor in the titres of antibodies against blood trypomastigotes (lytic antibodies), tissue culture trypomastigotes or epimastigotes. On immunoblot analysis, however, IgG of the resistant strain displayed the most complex array of specificities against both trypo and epimastigote antigens, followed by the susceptible strain. IgM antibodies exhibited a more restricted antigen reactivity, in the three mouse strains studied. Balb/c sera (IgG and IgM) showed the least complex patterns of reactivity to antigens in the range of 30 kDa to 80 kDa. The onset of reactivity in the serum to trypomastigote surface antigens was also dependent on the parasite load to which the experimental animal was subjected.  相似文献   

6.
With the purpose of studying the antigenic role that factors excreted by Leishmania amastigotes might have during murine infection, immunoblots were carried out with sera from C57BL/6 and BALB/c mice infected with two strains of Leishmania (L.) amazonensis, NR and IFLA/BR. Both strains differ widely in virulence in BALB/c mice. BALB/c but not C57BL/6 sera recognized several excretion products. The excreted antigens showed a strong response towards IgG1 and IgG2a isotypes whilst they reacted only weakly against IgG2b and IgG3. A low-molecular weight antigen (about 20 kDa) excreted by both Leishmania strains was strongly recognized by IgG1 from BALB/c mice sera infected with IFLA/BR, the most virulent strain. Sera from NR infected mice were incapable of recognizing this antigen in spite of its presence in NR excreted products. The results indicate that the humoral immune response to excreted antigens of amastigotes depends on both the host genetic background and the parasite strain.  相似文献   

7.
In isolated skeletal, heart, and smooth muscle cells from BALB/c and C3H/HeJ mice infected with different strains of Trypanosoma cruzi the presence of class II MHC molecules was investigated by immunocytochemical techniques. We employed single muscle fibers instead of conventional cryostat sections to obtain a more accurate antigen localization. Approximately half of the skeletal muscle cells isolated from the rectus femoris expressed Ia antigens on their surface, irrespective of the mouse or parasite strain combination. Ia expression was apparent only at 30 days postinfection and thereafter. The heart muscle cells expressed class II molecules only at 1 and 3 months postinfection. In no case did the smooth muscle cells from infected mice express Ia antigens. Studies of the same molecules in the noninfected animals gave constantly negative results. We conclude that in the course of the chronic infection of mice with T. cruzi, ectopic expression of class II MHC molecules occurs at the surface of skeletal and heart muscle cells, providing a possible mechanism for explaining the anti-striped muscle autoreactivity present in Chagas' disease.  相似文献   

8.
In the present study we evaluated the mechanisms behind the implication of the costimulatory molecule CD28 for the immune response against the intracellular protozoan parasite Trypanosma cruzi. Our results reveal a critical role for CD28 in the activation of both CD4+ and CD8+ T cells and induction of the effector mechanisms that ultimately mediate the control of parasite growth and pathogenesis in infected mice. CD28-deficient (CD28-/-) mice are highly susceptible to T. cruzi infection, presenting higher parasitemia and tissue parasitism, but less inflammatory cell infiltrate in the heart than C57Bl/6 wild-type (WT) mice. All the infected WT mice survived acute infection, whereas 100% of CD28-/- mice succumbed to it. The increased susceptibility of the CD28-/- mice was associated with a dramatic decrease in the production of IFN-gamma by both CD4+ and CD8+ T cells resulting in a diminished capacity to produce nitric oxide (NO) and mediate parasite killing. T cell activation was also profoundly impaired in CD28-/- mice, which presented decreased lymphoproliferative response after the infection compared to WT mice. Together, these data represent the first evidence that CD28 is critical for efficient CD4+ T cell activation in response to T. cruzi infection in mice.  相似文献   

9.
The autoantibodies induced in (C57BL/6 x BALB/c)F1 mice during Trypanosoma cruzi (CL strain) infection were analyzed and compared with natural autoantibodies present in healthy mice. Mice were killed at intervals after infection and their sera were tested by enzyme immunoassay against a panel of self- and non-self-Ag: actin, myoglobin, myosin, tubulin, DNA, and TNP-OVA. The level of IgM and IgG autoantibodies against all Ag started to increase from day 15 until 6 wk after the parasite infection. The high level of all autoantibodies persisted 3 mo postinfection, and 1 yr later, half of the mice still had elevated levels of IgM and IgG autoantibodies, particularly antitubulin IgG antibodies. IgM and IgG were isolated from pools of normal and infected mouse sera and their binding capacity to all Ag was compared. The titers of infected mouse sera were increased and the slopes of both IgM and IgG binding curves of autoantibodies to actin, myosin, and tubulin were greater than those of control mouse sera, indicating higher affinities. The average dissociation constant of the IgG2a autoantibody to mouse tubulin was 5 times lower than that of natural antitubulin IgG2a antibodies. Furthermore, absorption of the IgG from infected mouse sera onto a tubulin immunoadsorbent removed half the reactivity with tubulin and also with myosin, actin and parasite extracts. The eluted antibodies bound the same Ag. When IgG were further analyzed by Western blot on proteolytic fragments of tubulin, we found that antibodies from both groups bound to the same broad spectrum of polypeptide bands. However, additional fragments were recognized by antibodies from infected mice. All these results indicate that the autoantibodies naturally present in mice are significantly affected after infection with T. cruzi, in quantity as well as in specificity and affinity.  相似文献   

10.
Earlier work in Trypanosoma cruzi-infected C57BL/6 and BALB/c mice revealed an acute disease, of lethal outcome in the former group and lesser severity in BALB/c mice. Fatal course was not accompanied by an increased parasite load, but by a substantial imbalance between pro- and anti-inflammatory cytokine serum levels. To better characterise the mechanisms allowing the host to restrain the infection, we have now studied the specific IgG production and in vitro behaviour of peritoneal macrophages (PMs) when exposed to T. cruzi. BALC/c mice displayed higher serum levels of specific immunoglobulins in the first weeks of acute infection. In vitro infected PMs showed no between-group differences in the number of intracellular parasites, although TNFalpha levels were significantly higher in culture supernatants from C57BL/6 mice. Because an LPS-based pretreatment (desensitisation protocol followed by a sublethal LPS dose) reduced disease severity of C57BL/6 mice, we next explored the features of the in vitro infection in PMs from mice subjected to such protocol. PMs from LPS-pretreated mice had a decreased production of TNFalpha and IL-1beta, becoming more permissive to parasite replication. It is concluded that deficient control of T. cruzi infection in C57BL/6 mice may also involve a less satisfactory specific IgG response and increased TNFalpha production by PMs. Improved disease outcome in LPS-pretreated mice may be associated with the reduced inflammatory cytokine production by PMs, but the impaired ability of these cells to control parasite growth suggests that compensatory mechanisms are operating in the in vivo situation.  相似文献   

11.
Infection of mice with Trypanosoma cruzi elicits the production of parasite-specific antibodies which reach high levels and remain elevated for at least 105 days of infection. The more susceptible C3H(He) mouse actually has a higher level of "natural" antibodies for T. cruzi but may show a greater lag time in the production of antibodies in response to infection than the more resistant C57BL/6 mouse. Comparison of the kinetics of antibody production against T. cruzi and the numbers of immunoglobulin-producing cells in the spleen during the course of infection suggests that a large number of the immunoglobulin-producing cells are probably producing antibodies directed against the parasite and are not the result of an exhaustive polyclonal B-cell activation. Cell numbers in the spleen change dramatically both in total numbers and in the percentage of different cell types during infection with T. cruzi. The percentage of T cells in the spleen remains relatively unchanged throughout infection in both mouse strains tested but numbers of Ig-positive cells decrease markedly during the acute phase of infection while macrophage numbers increase up to sixfold. Cell numbers and proportions of B cells, T cells, and macrophages return to near normal values by 105 days of infection in the C57BL/6 mouse.  相似文献   

12.
Although a complete cellular and humoral immune response is elicited in Chagas' disease, recent data suggest that other natural elements of innate immunity may also contribute to the initial host primary defense. alpha-Macroglobulins are a family of plasma proteinase inhibitors that are acute-phase reactants in Trypanosoma cruzi-infected mice and humans. Mice contain a tetrameric alpha-2-macroglobulin (MAM) and a monomeric murinoglobulin (MUG). Heterogeneity in their reactions was observed in murine T. cruzi-infected plasma A2M levels despite an overall increase. In addition, up-regulation of the A2M receptor (A2MR/LRP) was observed in peritoneal macrophages during T. cruzi infection. Here, we show that during T. cruzi infection (Y strain), the MAM and MUG hepatic mRNA levels and the corresponding plasma protein levels were up-regulated in C3H and C57BL/6 (B6) mice, but with different kinetics. On the contrary, A2MR/LRP mRNA levels increased in acutely infected C3H mice, but decreased in B6 mice, in both liver and heart. Immunocytochemistry of infected B6 heart cryosections confirmed a less intense endothelium labeling by the fluoresceinated ligand for A2MR/LRP. On the other hand, infected B6 spleen cells displayed higher F-A2M-FITC binding and MAC1 expression, confirming higher A2MR/LRP expression in macrophages. In uninfected mice, as well as after T. cruzi infection, higher A2M plasma levels were measured in C3H mice than in B6 mice. The lower tissue T. cruzi parasitism found in C3H-infected mice could reflect an inhibitory effect of A2M on parasite invasion. Our present data further contribute to clarifying aspects of the role of A2MR/LRP in a model of acute Chagas' disease in different mouse strains.  相似文献   

13.
Chagas' disease is a zoonosis prevalent in Latin America that is caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas' disease, has been extensively studied but is still poorly understood. In this study, we systematically compared clinical, microbiologic, pathologic, immunologic, and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice; however, most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold greater than C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8(+) T cells and both CD4(+) and CD8(+) subsets of IFN-γ(+)IL-10(+) double-producing T cells. Furthermore, T. cruzi infection of IL-10(-/-) C57BL/6J mice phenocopied fatal infection in wild-type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system, IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis.  相似文献   

14.
Three inbred strains of mice (BALB/cJ, C3H/HeJ and NZB/BInJ) were infected with trypomastigotes of Trypanosoma cruzi. Sera were taken at different times after infection and radioimmunoprecipitation assays were used to detect antibodies against individual T. cruzi epimastigote and trypomastigote antigens. The mouse strains differed in regard to the spectrum of antibodies and the time after infection when the various epimastigote specific antibody species appeared. NZB mice had antibodies against at least 25 polypeptides ranging in molecular weight from 20,000 to 90,000 D at 3 wk after infection, and these persisted until at least 10 wk post-infection. C3H and BALB/c had antibodies against fewer than 5 antigens at 3 wk after infection; whereas by week 10, antibodies against at least 25 polypeptides were detected. C3H mice that were most susceptible to infection (but not NZB or BALB/c mice) had antibodies against a 25,000 D molecular weight epimastigote antigen. The antibody response against trypomastigote polypeptides was more uniform. Sera from all mouse strains at 3 wk after infection precipitated the same polypeptides and the radioimmunoprecipitation patterns did not change as a function of time after infection.  相似文献   

15.
In murine infection with Trypanosoma cruzi, immune responsiveness to parasite and non-parasite Ag becomes suppressed during the acute phase of infection, and this suppression is known to extend to the production of IL-2. To determine whether suppression of lymphokine production was specific for IL-2, or was a generalized phenomenon involving suppressed production of other lymphokines, we have begun an investigation of the ability of mice to produce of a number of lymphokines during infection, initially addressing this question by studying IFN-gamma production. Supernatants from Con A-stimulated spleen cells from infected resistant (C57B1/6) and susceptible (C3H) mice were assayed for IFN-gamma. Supernatants known to be suppressed with respect to IL-2 production from both mouse strains contained IFN-gamma at or above that of supernatants from normal spleen cells. Samples were assayed in an IFN bioassay to ensure that the IFN-gamma detected by ELISA was biologically active. Thus, suppression during T. cruzi infection does not extend to the production of all lymphokines. The stimulation of IFN-gamma production was confirmed by detection of IFN-gamma mRNA in unstimulated spleen cells from infected animals, and in Con A, Con A + PMA, and in some cases, parasite Ag-stimulated spleen cells from infected animals. IFN-gamma mRNA levels in mitogen-stimulated spleen cells equalled or exceeded those found in similarly stimulated normal cells. In contrast, stimulated spleen cells from infected animals had reduced levels of IL-2 mRNA relative to normal spleen cells. Thus at both the protein and mRNA level, IFN-gamma production is stimulated by T. cruzi infection, whereas IL-2 production is suppressed. Serum IFN-gamma in infected C57B1/6 and C3H mice was detected 8 days after infection, peaked on day 20 of infection, and subsequently fell, but remained detectable at low levels throughout the life of infected mice. Infected animals were depleted of cell populations known to be capable of producing IFN-gamma, and Thy-1+, CD4-, CD8-, NK- cells, and to a lesser degree, CD4+ and CD8+ cells were found to be responsible for the production of IFN-gamma during infection. We also report that IL-2 can induce IFN-gamma production in vitro and in vivo by spleen cells from infected animals, and that IL-2 can synergize with epimastigote or trypomastigote antigen to produce high levels of IFN-gamma comparable to those found in supernatants from mitogen-stimulated cells.  相似文献   

16.
The mechanism by which Trypanosoma cruzi egresses from infected cells at the end of the intracellular replication cycle is not understood. This study explored the role of T. cruzi-derived proteases and host-cell membrane permeability during the parasite's egress process. Treatment with a fluoromethyl ketone, known to inhibit the parasite's major protease, significantly reduced parasite egress. In addition, in the late stages of intracellular infection, cells infected with T. cruzi showed increased permeability as evidenced by dye exclusion tests. Furthermore, parasites could be antibody stained inside host cells without chemical permeabilization of the plasma membrane. These results suggest that in advanced stages of the intracellular cycle of T. cruzi, the host cells lose membrane integrity. Previous studies in our laboratory have found that antibodies present in sera of mice chronically infected with T. cruzi (antiegressin) bind the surface of infected cells and reduce parasite egress. In agreement with these reports, western blot analysis showed that several proteins in infected cell membrane extracts reacted with antibodies from infected mouse serum. The findings reported herein might have implications in the process of T. cruzi egress, as well as in the mechanism of action of antiegressin.  相似文献   

17.
Abstract Infection with Trypanosoma cruzi develops in three phases: acute, indeterminate or asymptomatic, and chronic phase (with cardiac or digestive manifestations). Moreover, transmission may occur from infected mothers to newborn, the so-called congenital form. In the present study, humoral responses against T. cruzi total extract and against the 13 amino acid peptide named R-13 derived from the parasite ribosomal P protein, previously described as a possible marker of chronic Chagas heart disease, were determined pateints and in blood bank donors from endemic areas. While in sera from acute phase, only IgM anti- T.cruzi response was observed, both IgM and IgG anti- T. cruzi antibodies were detected in sera from congenitally infected newborns. The percentage of positive response in sera from blood bank donors was relatively high in endemic regions. Antibodies against the R-13 peptide were present in a large proportion of cardiac chagasic patients but were totally lacking in patients with digestive form of Chagas disease. Furthermore, anti-R-13 positive responses were detected in congenitally infected newborns.  相似文献   

18.
Cellular populations involved in resistance against T. cruzi infection were characterized from mice chronically infected with the parasite. Mice transfused with spleen cells (SC), nylon-wool-non-adherent spleen cells (NWNA) or sera from mice chronically infected with T. cruzi, showed an enhanced resistance against challenge with the parasite. The protective activity of NWNA but not of SC was completely abrogated by treatment with anti-Thy1.2 monoclonal antibodies (mAb) and complement (C). Pretreatment of NWNA cells from chronically infected mice with either anti-L3T4 or anti-Lyt 2.2 mAb partially reduced the transfer of resistance. When both L3T4+ and Lyt2.2+ cells were depleted from NWNA populations, transfer of resistance was abolished. These results appear to indicate that L3T4+, Lyt2.2+ T cell subsets and non-T cells are involved in the immunity to T. cruzi.  相似文献   

19.
The numbers of antigen-reactive antibody-secreting cells, levels of parasite antigen-specific serum antibodies and numbers of red blood cells staining positive for surface immunoglobulin were determined for susceptible and resistant mouse strains following infection with Plasmodium yoelii 17x. As a control, these parameters also were measured using antigen prepared from normal red blood cells. The relatively susceptible C57BL/6 mice produced more antigen-specific antibody-secreting cells and had higher levels of immunoglobulin positive red blood cells than did DBA/2 mice, but the DBA/2 mice had more antigen-specific IgG in their sera. Both mouse strains possessed cells secreting antibody reactive with soluble normal red blood cell antigen; however, C57BL/6 mice had more IgG positive unparasitized RBC than did DBA/2 mice. Despite possessing fewer antibody positive normal RBC, DBA/2 mice had significantly higher levels of serum antibodies that reacted with soluble red blood cell antigen. These data indicate that levels of serum antibody may not reflect the amounts of antibody produced and that use of any single assay to assess the magnitude of the antibody response may give rise to misleading results.  相似文献   

20.
The utilization of the nine major homology families of VH-genes was quantitated in the B lymphocyte response to Trypanosoma cruzi infection of C57BL/6 mice. Normal and infected mice at various times after parasite inoculation were compared for VH-gene distribution of CFU-B produced by activated blasts recovered from spleen and lymph nodes, and for relative hybridization of total spleen RNA with each of the family probes. T. cruzi infection results in large increases of splenic RNA in the various homology families, and the numbers of activated CFU-B, reflecting the massive B lymphocyte responses. In acute phase, all nine families are expressed in roughly the same proportions as in normal mice, whereas in chronic infection, B cells expressing S107 and 7183 VH-genes might be preferentially stimulated. These results establish the polyclonal nature of the host response to T. cruzi infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号