首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions.  相似文献   

2.
Hyperglycemia has been linked to increased oxidative stress, a resultant endothelial cell dysfunction, and, ultimately, apoptosis. Heme oxygenases (HO-1/HO-2) and the products of their activity, biliverdin/bilirubin and carbon monoxide (CO), play a physiological role in the vascular system. The effects of heme-mediated HO-1 induction, CO, and biliverdin on urinary 8-epi-isoprostane PGF2 and endothelial cell sloughing were examined in an animal model of streptozotocin (STZ)-induced diabetes. Hyperglycemia itself did not affect HO-1 and HO-2 protein levels, but caused a net decrease in HO activity. Weekly heme administration induced HO-1 protein, as demonstrated by immunohistochemistry and Western blot analyses. Administration of biliverdin or the CO donor, CORM-3, decreased urinary 8-epi-isoprostane PGF2, P < 0.5 compared to diabetes. Hyperglycemia increased endothelial cell sloughing; 8.2 ± 0.8 cells/ml blood in control rats vs. 48 ± 4.8 cells/ml blood in diabetic rats (P < 0.05). Heme administration significantly increased endothelial cell sloughing in diabetic rats (98 ± 8.1 cells/ml blood, P < 0.0007) whereas biliverdin modestly decreased endothelial cell sloughing (26 ± 3.5 cells/ml blood, P < 0.003). Administration of CORM-3 to diabetic rats resulted in a significant decrease in endothelial cell sloughing to 21.3 ± 2.3 (P < 0.001). Administration of SnMP to CORM-3 diabetic rats only partially reversed the protective effects of CORM-3 on endothelial cell sloughing from 21.3 ± 2.3 to 29 ± 2.1 cells/ml, thus confirming a direct protective of CO, in addition to the ability of CORM-3 to induce HO-1 protein. These results demonstrate that exogenously administered CO or bilirubin can prevent endothelial cell sloughing in diabetic rats, likely via a decrease in oxidative stress, and thus represents a novel approach to prophylactic vascular protection in diabetes.  相似文献   

3.
We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS) and/or heme oxygenase (HO) in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine) or decreases (sodium nitroprusside) in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days) significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS). Findings that favor the involvement of NOS inhibition in the nicotine effect were (i) NOS inhibition (N ω-Nitro-L-arginine methyl ester, L-NAME) reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii) L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP) had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer) but not tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide (CO) releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC). The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine. Further, hemin alleviates the nicotine effect through a mechanism that is NOS/sGC but not CO or bilirubin-dependent.  相似文献   

4.
Transient reduction in coronary perfusion pressure in the isolated mouse heart increases microvascular resistance (paradoxical vasoconstriction) by an endothelium-mediated mechanism. To assess the presence and extent of paradoxical vasoconstriction in hearts from normal and diabetic rats and to determine whether increased heme oxygenase (HO)-1 expression and HO activity, using cobalt protoporphyrin (CoPP), attenuates coronary microvascular response, male Wistar rats were rendered diabetic with nicotinamide/streptozotocin for 2 wk and either CoPP or vehicle was administered by intraperitoneal injection weekly for 3 wk (0.5 mg/100 g body wt). The isolated beating nonworking heart was submitted to transient low perfusion pressure (20 mmHg), and coronary resistance (CR) was measured. During low perfusion pressure, CR increased and was associated with increased lactate release. In diabetic rats, CR was higher, HO-1 expression and endothelial nitric oxide synthase were downregulated, and inducible nitric oxide synthase and O(2)(-) were upregulated. After 3 wk of CoPP treatment, HO activity was significantly increased in the heart. Upregulation of HO-1 expression and HO activity by CoPP resulted in the abolition of paradoxical vasoconstriction and a reduction in oxidative ischemic damage. In addition, there was a marked increase in serum adiponectin. Elevated HO-1 expression was associated with increased expression of cardiac endothelial nitric oxide synthase, B-cell leukemia/lymphoma extra long, and phospho activator protein kinase levels and decreased levels of inducible nitric oxide synthase and malondialdehyde. These results suggest a critical role for HO-1 in microvascular tone control and myocardial protection during ischemia in both normal and mildly diabetic rats through the modulation of constitutive and inducible nitric oxide synthase expression and activity, and an increase in serum adiponectin.  相似文献   

5.
Heme oxygenases (HO-1 and HO-2) catalyze the conversion of heme to carbon monoxide (CO), iron, and biliverdin. CO causes vasorelaxation via stimulation of soluble guanylate cyclase (sGC) and/or activation of calcium-activated potassium channels. Because nitric oxide (NO) exerts effects via the same pathways, we tested the interaction between CO and NO on rat afferent arterioles (AAs) using the blood-perfused juxtamedullary nephron preparation. AAs were superfused with either tricarbonyldichlororuthenium (II) dimer, known as CO releasing molecule (CORM-2), 10 micromol/l CO solution, or 15 micromol/l chromium mesoporphyrin (CrMP, HO inhibitor). AAs were also superfused with 1 mmol/l N(omega)-nitro-L-arginine (L-NNA) to inhibit NO synthase (NOS) or 10 micromol/l 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one to inhibit sGC, and then CrMP was superfused during NOS inhibition or sGC inhibition. Treatment with 150 and 300 micromol/l CORM-2 or with CO (10 micromol/l) significantly dilated AAs (22.0 +/- 0.9 and 22.8 +/- 0.9 vs. 18.3 +/- 0.9 microm, n = 5, P < 0.05; and 26.0 +/- 1.4 vs. 18.8 +/- 0.7 microm, n = 5, P < 0.05). In untreated vessels, HO inhibition did not alter AA diameter (17.5 +/- 0.7 vs. 17.2 +/- 0.6 microm, n = 7, P > 0.05); however, during inhibition of NO production, which constricted arterioles to 14.6 +/- 1.2 microm, n = 6, P < 0.05, concurrent HO inhibition led to further vasoconstriction (11.7 +/- 1.6 microm, n = 6, P < 0.05). CORM-2 attenuated the L-NNA-induced vasoconstriction. Inhibition of sGC caused significant constriction (15.7 +/- 0.4 vs. 18.8 +/- 0.4 microm, n = 6, P < 0.05). HO inhibition during sGC inhibition did not cause further change in AAs (15.5 +/- 0.7 microm, n = 6). We conclude that endogenously produced CO does not exert a perceptible influence on AA diameter in the presence of intact NO system; however, when NO production is inhibited, CO serves as an important renoprotective reserve mechanism to prevent excess afferent arteriolar constriction.  相似文献   

6.
A novel vasodilatory influence of endothelial cell (EC) large-conductance Ca(2+)-activated K(+) (BK) channels is present after in vivo exposure to chronic hypoxia (CH) and may exist in other pathological states. However, the mechanism of channel activation that results in altered vasoreactivity is unknown. Previously, we demonstrated that inhibition of either BK channels or heme oxygenase (HO) restores vasoconstrictor reactivity after CH. Additionally, administration of the scaffolding domain of caveolin (Cav)-1 inhibits EC BK activity and restores vasoconstrictor reactivity in this setting. These results led us to hypothesize that CH exposure results in a loss in Cav-1 inhibition of EC BK channels, resulting in their activation by HO-derived carbon monoxide (CO). Experiments were conducted on freshly dispersed aortic ECs from control and CH-exposed (barometric pressure: 380 mmHg for 48 h) rats. In electrophysiology experiments, outward currents were greater in cells from CH rats as well as from cells from control rats treated with the cholesterol-depleting agent methyl-β-cyclodextrin. These enhanced currents were returned to control by HO inhibition. Channel activity could be restored by the CO donor CO-releasing molecule (CORM)-2 during HO inhibition. Administration of the Cav-1 scaffolding domain eliminated BK currents in cells from CH rats, and current was not restored by the addition of CORM-2. Colocalization experiments in ECs from control and CH rats demonstrated an association between HO-2, Cav-1, and BK. We conclude that EC BK channel activity is HO dependent in the absence of the inhibitory effect of the Cav-1 scaffolding domain.  相似文献   

7.
Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P < 0.05). Upregulation of HO-1 expression by intermittent administration of cobalt protoporphyrin, an inducer of HO-1 protein and activity, resulted in a robust increase in EC-SOD but no significant change in Cu-Zn-SOD. Administration of tin mesoporphyrin, an inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.  相似文献   

8.

Background

Carbon monoxide (CO) synthesized by heme oxygenase 1 (HO-1) exerts antinociceptive effects during inflammation but its role during neuropathic pain remains unknown. Our objective is to investigate the exact contribution of CO derived from HO-1 in the modulation of neuropathic pain and the mechanisms implicated.

Methodology/Principal Findings

We evaluated the antiallodynic and antihyperalgesic effects of CO following sciatic nerve injury in wild type (WT) or inducible nitric oxide synthase knockout (NOS2-KO) mice using two carbon monoxide-releasing molecules (CORM-2 and CORM-3) and an HO-1 inducer (cobalt protoporphyrin IX, CoPP) daily administered from days 10 to 20 after injury. The effects of CORM-2 and CoPP on the expression of HO-1, heme oxygenase 2 (HO-2), neuronal nitric oxide synthase (NOS1) and NOS2 as well as a microglial marker (CD11b/c) were also assessed at day 20 after surgery in WT and NOS2-KO mice. In WT mice, the main neuropathic pain symptoms induced by nerve injury were significantly reduced in a time-dependent manner by treatment with CO-RMs or CoPP. Both CORM-2 and CoPP treatments increased HO-1 expression in WT mice, but only CoPP stimulated HO-1 in NOS2-KO animals. The increased expression of HO-2 induced by nerve injury in WT, but not in NOS2-KO mice, remains unaltered by CORM-2 or CoPP treatments. In contrast, the over-expression of CD11b/c, NOS1 and NOS2 induced by nerve injury in WT, but not in NOS2-KO mice, were significantly decreased by both CORM-2 and CoPP treatments. These data indicate that CO alleviates neuropathic pain through the reduction of spinal microglial activation and NOS1/NOS2 over-expression.

Conclusions/Significance

This study reports that an interaction between the CO and nitric oxide (NO) systems is taking place following sciatic nerve injury and reveals that increasing the exogenous (CO-RMs) or endogenous (CoPP) production of CO may represent a novel strategy for the treatment of neuropathic pain.  相似文献   

9.
Vascular tissues express heme oxygenase (HO), which metabolizes heme to form carbon monoxide (CO). Heme-derived CO inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. After 4 wk of high-salt diet, Dahl salt-sensitive (Dahl-S) rats display hypertension, increased vascular HO-1 expression, and attenuated vasodilator responses to ACh that can be completely restored by acute treatment with an inhibitor of HO. In this study, we examined the temporal development of HO-mediated endothelial dysfunction in isolated pressurized first-order gracilis muscle arterioles, identified the HO product responsible, and studied the blood pressure effects of HO inhibition in Dahl-S rats on a high-salt diet. Male Dahl-S rats (5-6 wk) were placed on high-salt (8% NaCl) or low-salt (0.3% NaCl) diets for 0-4 wk. Blood pressure increased gradually, and responses to an endothelium-dependent vasodilator, ACh, decreased gradually with the length of high-salt diet. Flow-induced dilation was abolished in hypertensive Dahl-S rats. Acute in vitro pretreatment with an inhibitor of HO, chromium mesoporphyrin (CrMP), restored endothelium-dependent vasodilation and abolished the differences between groups. The HO product CO prevented the restoration of endothelium-dependent dilation by CrMP. Furthermore, administration of an HO inhibitor lowered blood pressure in Dahl-S rats with salt-induced hypertension but did not do so in low-salt control rats. These results suggest that hypertension and HO-mediated endothelial dysfunction develop gradually and simultaneously in Dahl-S rats on high-salt diets. They also suggest that HO-derived CO underlies the impaired endothelial dysfunction and contributes to hypertension in Dahl-S rats on high-salt diets.  相似文献   

10.
The extended postictal state is characterized by neurological problems in patients. Inadequate blood supply to the brain and impaired cerebral autoregulation may contribute to seizure-induced neuronal damage. Recent evidence in newborn pigs indicates that activation of the antioxidative enzyme heme oxygenase (HO) at the onset of seizures is necessary for increased cerebral blood flow during the ictal episode and for normal cerebral vascular functioning during the immediate postictal period. We hypothesized that seizures cause prolonged postictal cerebral vascular dysfunction that can be accentuated by HO inhibition and rescued by HO overexpression. Cerebral vascular responses to endothelium-dependent (hypercapnia, bradykinin) and -independent (isoproterenol, sodium nitroprusside) stimuli were assessed 48 h after bicuculline-induced seizures in: 1) saline-control newborn piglets, 2) HO-inhibited animals (HO was inhibited by tin protoporphyrin, SnPP, 3 mg/kg iv), and 3) HO-overexpressing piglets (HO-1 was upregulated by cobalt protoporphyrin, CoPP, 50 mg/kg ip). Extended alterations of HO expression in cerebral microvessels were confirmed by measuring CO production and inducible HO (HO-1) and constitutive HO (HO-2) proteins. Our data provide evidence that seizures cause a severe, sustained, postictal cerebral vascular dysfunction as reflected by impaired vascular reactivity to physiologically relevant dilators. During the delayed postictal state, vascular reactivity to all dilator stimuli was reduced in saline control and, to a greater extent, in HO-inhibited animals. In CoPP-treated piglets, no reduction in postictal cerebral vascular reactivity was observed. These findings may indicate that CoPP prevents postictal cerebral vascular dysfunction by upregulating HO-1, a finding that might have implications for preventing postictal neurological complications.  相似文献   

11.
Heme oxygenase-1 (HO-1) represents a key defense mechanism against oxidative injury. Hyperglycemia has been linked to increased oxidative stress, leading to endothelial dysfunction, delayed cell replication, and enhanced apoptosis. The effect of streptozotocin (STZ)-induced diabetes on HO activity, HO-1 promoter activity, superoxide anion (O*-2, and the number of circulating endothelial cells was measured. The expression of HO-1/HO-2 protein was unchanged, but HO activity was decreased in aortas of diabetic rats compared with control (p < 0.05). High glucose decreased HO-1 promoter activity (p < 0.05). Hyperglycemia increased O*-2 and this increase was augmented with HO-1 inhibition and diminished with HO-1 upregulation (p < 0.05). Circulating endothelial cells were significantly higher in diabetic rats and were decreased or increased with administration of the HO-1 inducer (CoPP) or inhibitor (SnMP), respectively (p<0.05). In conclusion, HO-1 upregulation in diabetic rats brings about an increase in serum bilirubin, a reduction in O*-2 production, and a decrease in endothelial cell sloughing.  相似文献   

12.
Heme oxygenase (HO) is a microsomal enzyme that oxidatively cleaves heme to form biliverdin, releasing iron and carbon monoxide (CO). Thus, HO not only controls the availability of heme for the synthesis of hemeproteins but also generates CO, which binds to the heme moiety of hemoproteins, thereby affecting their enzymatic activity. The present study was undertaken to explore changes in the relative expression of renal HO-1 and HO-2 in response to modulators and the effect on blood pressure regulation in spontaneously hypertensive rats (SHR). Immunohistochemistry confirmed a cobalt protoporphyrin (CoPP)-mediated increase in HO-1 protein. After a single injection of CoPP (5 mg/100 gram body weight) in 7-week-old SHR, blood pressure significantly decreased (p<0.01) while renal HO activity increased 6-fold over controls. CoPP pretreatment deceased the levels of the renal cytochrome P450-derived arachidonic acid metabolite, 20-HETE, a powerful vasoconstrictor, by 65% in renal tissue. Western blot analysis demonstrated that CoPP significantly increased HO-1 protein expression in the cortex and outer medulla and, to a lesser degree, in the inner medulla of the rat kidney. HO-2 was constitutively expressed in all parts of the kidney, and did not significantly change after treatment with CoPP. These results indicate that selective induction of cortical and outer medullary HO-1 is associated with a decrease in 20-HETE and blood pressure, suggesting an important role for HO-1 activity in the regulation of urine volume, electrolyte excretion and blood pressure.  相似文献   

13.
Several biological effects of haem oxygenase (HO)‐1, including anti‐inflammatory, antiapoptotic and antioxidative properties were reported; however, the role of HO‐1 in apoptosis is still unclear. In the presence of stimulation by cobalt protoporphyrin (CoPP), an HO‐1 inducer, apoptotic characteristics were observed, including DNA laddering, hypodiploid cells, and cleavages of caspase (Casp)‐3 and poly(ADP) ribose polymerase (PARP) proteins in human colon carcinoma COLO205, HCT‐15, LOVO and HT‐29 cells in serum‐free (SF) conditions with increased HO‐1, but not heat shock protein 70 (HSP70) or HSP90. The addition of 10% foetal bovine serum (FBS) or 1% bovine serum albumin accordingly inhibited CoPP‐induced apoptosis and HO‐1 protein expression in human colon cancer cells. CoPP‐induced apoptosis of colon cancer cells was prevented by the addition of the pan‐caspase inhibitor, Z‐VAD‐FMK (VAD), and the Casp‐3 inhibitor, Z‐DEVD‐FMK (DEVD). N‐Acetyl cysteine inhibited reactive oxygen species‐generated H2O2‐induced cell death with reduced intracellular peroxide production, but did not affect CoPP‐induced apoptosis in human colorectal carcinoma (CRC) cells. Two CoPP analogs, ferric protoporphyrin and tin protoporphyrin, did not affect the viability of human CRC cells or HO‐1 expression by those cells, and knockdown of HO‐1 protein expression by HO‐1 small interfering (si)RNA reversed the cytotoxic effect elicited by CoPP. Furthermore, the carbon monoxide (CO) donor, CORM, but not FeSO4 or biliverdin, induced DNA ladders, and cleavage of Casp‐3 and PARP proteins in human CRC cells. Increased phosphorylated levels of the endoplasmic reticular (ER) stress proteins, protein kinase R‐like ER kinase (PERK), and eukaryotic initiation factor 2α (eIF2α) by CORM and CoPP were identified, and the addition of the PERK inhibitor, GSK2606414, inhibited CORM‐ and CoPP‐induced apoptosis. Increased GRP78 level and formation of the HO‐1/GRP78 complex were detected in CORM‐ and CoPP‐treated human CRC cells. A pro‐apoptotic role of HO‐1 against the viability of human CRC cells via induction of CO and ER stress was firstly demonstrated herein.  相似文献   

14.
Heme oxygenase (HO) catalyzes the degradation of heme to form iron, biliverdin, and carbon monoxide (CO). The vascular actions of CO include direct vasodilation of vascular smooth muscle and indirect vasoconstriction through inhibition of nitric oxide synthase (NOS). This study was performed to examine the effects in the kidney of inhibition of heme oxygenase alone or combined with NOS inhibition. Chromium mesoporphyrin (CrMP; 45 μmol/kg ip), a photostable HO inhibitor, was given to control rats and N(G)-nitro-l-arginine methyl ester (l-NAME)-treated hypertensive rats (50 mg·kg?1·day?1), 12 h, 4 days). In control animals, CrMP decreased CO levels, renal HO-1 levels, urine volume, and sodium excretion, but had no effect on arterial pressure, renal blood flow (RBF), plasma renin activity (PRA), or glomerular filtration rate (GFR). In l-NAME-treated hypertensive rats, CrMP decreased endogenous CO and renal HO-1 levels and had no effect on arterial pressure, RBF, or GFR but decreased sodium and water excretion in a similar manner to control animals. An increase in PRA was observed in untreated rats but not in l-NAME-infused rats, indicating that this effect is associated with an absent NO system. The results suggest that inhibition of HO promotes water and sodium excretion by a direct tubular action that is independent of renal hemodynamics or the NO system.  相似文献   

15.
内源性一氧化碳在大鼠高血压发病中的作用   总被引:11,自引:4,他引:11  
Ou HS  Yang J  Dong LW  Pang YZ  Su JY  Tang CS  Liu NK 《生理学报》1998,50(6):643-648
本实验研究内源性血红素氧化酶/一氧化碳系统在大鼠高血压发病听作用。2,4二甘油次卟啉锌是体内HO活必抑制剂 。  相似文献   

16.
Vascular heme oxygenase (HO) metabolizes heme to form carbon monoxide (CO). Increased heme-derived CO inhibits nitric oxide synthase and can contribute to hypertension via endothelial dysfunction in Dahl salt-sensitive rats. Obese Zucker rats (ZR) are models of metabolic syndrome. This study tests the hypothesis that endogenous CO formation is increased and contributes to hypertension and endothelial dysfunction in obese ZR. Awake obese ZR showed increased respiratory CO excretion, which was lowered by HO inhibitor administration [zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) 25 micromol.kg(-1).24 h(-1) ip]. In awake obese ZR, chronically instrumented with femoral arterial catheters, blood pressure was elevated but was decreased by the HO inhibitor ZnDPBG. Body weight, blood glucose, glycated hemoglobin, plasma insulin, total and LDL cholesterol, oxidized LDL, and triglyceride levels were elevated in obese ZR, and, except for LDL cholesterol, were unchanged by HO inhibition. Total HO-1 protein levels were not different between lean and obese ZR aortas. In vitro experiments used isolated skeletal muscle arterioles with constant pressure and no flow, or constant midpoint, but altered endpoint pressures to establish graded levels of luminal flow. In obese ZR arterioles, responses to ACh and flow were attenuated. Acute in vitro pretreatment with an HO inhibitor, chromium mesoporphyrin, enhanced ACh and flow-induced dilation and abolished the differences between groups. Furthermore, exogenous CO prevented the restoration of flow-induced dilation by the HO inhibitor in obese ZR arterioles. These results suggest that HO-derived CO production is increased and promotes hypertension and arteriolar endothelial dysfunction in obese ZR with metabolic syndrome independent of affecting metabolic parameters.  相似文献   

17.
11,12-Epoxyeicosatrienoic acid (11,12-EET), a potent vasodilator produced by the endothelium, acts on calcium-activated potassium channels and shares biological activities with the heme oxygenase/carbon monoxide (HO/CO) system. We examined whether activation of HO mediates the dilator action of 11,12-EET, and that of the other EETs, on rat mesenteric arteries. Dose-response curves (10(-9) to 10(-6) M) to 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET, and ACh (10(-9) to 10(-4) M) were evaluated in preconstricted (10(-6) mol/l phenylephrine) mesenteric arteries (<350 microm diameter) in the presence or absence of 1) the cyclooxygenase inhibitor indomethacin (2.8 microM), 2) the HO inhibitor chromium mesoporphyrin (CrMP) (15 microM), 3) the soluble guanylyl cyclase (GC) inhibitor ODQ (10 microM), and 4) the calcium-activated potassium channel inhibitor iberiotoxin (25 nM). The vasodilator response to 11,12-EET was abolished by CrMP and iberiotoxin, whereas indomethacin and ODQ had no effect. In contrast, the effect of ACh was attenuated by ODQ but not by CrMP. The vasodilator effect of 8,9-EET, like that of 11,12-EET, was greatly attenuated by HO inhibition. In contrast, the mesenteric vasodilator response to 5,6-EET was independent of both HO and GC, whereas that to 14,15-EET demonstrated two components, an HO and a GC, of equal magnitude. Incubation of mesenteric microvessels with 11,12-EET caused a 30% increase in CO release, an effect abolished by inhibition of HO. We conclude that the rat mesenteric vasodilator action of 11,12-EET is mediated via an increase in HO activity and an activation of calcium-activated potassium channels.  相似文献   

18.
The present studies compared the effects of CO-releasing molecule (CORM-1), authentic CO, and nonadrenergic noncholinergic (NANC) nerve stimulation in the internal anal sphincter (IAS). Functional in vitro experiments and Western blot studies were conducted in rat IAS smooth muscle. We examined the effects of CORM-1 (50-600 microM) and authentic CO (5-100 microM) and NANC nerve stimulation by electrical field stimulation (EFS; 0.5-20 Hz, 0.5-ms pulse, 12 V, 4-s train). The experiments were repeated after preincubation of the tissues with the neurotoxin TTX, the guanylate cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ), the selective heme oxygenase (HO) inhibitor tin protoporphyrin IX (SnPP-IX), the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (L-NNA), and SnPP-IX + L-NNA. We also investigated the effects of the HO substrate hematin (100 microM). CORM-1, as well as CO, produced concentration-dependent IAS relaxation, whereas hematin had no effect. TTX abolished and L-NNA significantly blocked IAS relaxation by EFS without any effect on CORM-1 and CO. ODQ blocked IAS relaxation by CORM-1, authentic CO, and EFS. SnPP-IX had no significant effect on IAS relaxation by CORM-1, CO, or EFS. The presence of neuronal nitric oxide synthase, HO-1, and HO-2 in IAS smooth muscle was confirmed by Western blot studies. CORM-1 and CO, as well as NANC nerve stimulation, produced IAS relaxation via guanylate cyclase/cGMP-dependent protein kinase activation. The advent of CORM-1 with potent effects in the IAS has significant implications in anorectal motility disorders with regard to pathophysiology and therapeutic potentials.  相似文献   

19.
应用盲肠结扎法制备大鼠败血症休克模型,研究内源性一氧化碳(CO)在败血症休克时低血压发病中的作用。用血红素加氧酶(hemeoxygenase,HO)抑制剂2,4二甘油次卟啉锌(zincdeuteroporphyrin2,4bisglycol,ZnDPBG)处理大鼠后,观察动物动脉血压,同时测定主动脉平滑肌组织中HO活性和CO生成量。结果发现:败血症大鼠动脉收缩压、舒张压降低,同时血管平滑肌HO活性和CO生成明显增加。败血症大鼠用ZnDPBG处理后,动脉血压明显回升,同时HO活性和CO生成明显被抑制。实验表明败血症休克时低血压的发生与血管平滑肌细胞HO活性增加和内源性CO生成增多明显相关;应用HO抑制剂阻断HO活性能导致内源性CO生成减少,继而使败血症休克时大鼠血压明显回升。实验提示,内源性CO对血管张力具有重要的调节作用;HO活性和内源性CO生成增加是败血症休克时低血压发生的重要机制之一。  相似文献   

20.
A sepsis model induced by cecal ligation and puncture was used to study the role of endogenous carbon monoxide in hypotension pathogenesis of rats during septic shock. After administration of zinc deuteroporphyrin 2,4-bisglycol (ZnDPBG),an inhibitor of heme oxygenase (HO),blood pressure (BP),HO activity and carbon monoxide (CO) release from vascular muscle tissue were measured. The results showed that BP of sepsis rats,including systolic and diastolic arterial BP,decreased significantly while HO activity and CO content were significantly increased. In contrast,after administration of ZnDPBG,BP of sepsis rats was significantly increased while the HO activity and CO production were significantly decreased. These findings suggest that HO activity and CO release within vascular musculature are increased during septic shock;inhibition of HO may elevate BP of rats during septic shock through a decrease of endogenous CO production. It is concluded that endogenous CO derived from vascular muscle cells plays an important role in regulating vascular tone,and the up-regulation of HO activity followed by subsequent CO production contributes to hypotension pathogenesis during septic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号