首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human platelets attenuate oxidant injury in isolated rabbit lungs   总被引:2,自引:0,他引:2  
Because platelets contain active antioxidant systems, the capacity of platelets to attenuate oxidant lung injury was investigated. Purine and xanthine oxidase were infused into isolated perfused rabbit lungs (IPL) to generate H2O2, thereby causing increased membrane permeability edema. The coinfusion of washed human platelets (1.20 +/- 0.07 x 10(10) cells) attenuated the degree of edema formation as measured by lung weight gain and lung lavage albumin concentration. Electron microscopy of lung preparations demonstrated platelet adherence to capillary endothelial luminal surfaces of oxidant-injured lungs, but there was no evidence of vascular plugging with platelet macroaggregates. The platelet glutathione redox cycle or platelet catalase were inhibited before infusion of platelets into the IPL with purine and xanthine oxidase. Inhibition of the glutathione redox cycle with 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-chloro-2,4-dinitrobenzene, or buthionine sulfoximine prevented platelet attenuation of lung injury. Inactivation of platelet catalase with 3-amino-1,2,4-triazole, however, did not significantly reduce the platelet-induced lung protection. We conclude that the platelet glutathione redox cycle plays a major role in reducing enzymatically generated toxic O2 metabolites and attenuating lung injury.  相似文献   

2.
Preexposure to hypoxia increased survival and lung reduced glutathione-to-oxidized glutathione ratios (GSH/GSSG) and decreased pleural effusions in rats subsequently exposed to continuous hyperoxia. In addition, lungs from hypoxia-preexposed rats developed less acute edematous injury (decreased lung weight gains and lung lavage albumin concentrations) than lungs from normoxia-preexposed rats when isolated and perfused with hydrogen peroxide (H2O2) generated by xanthine oxidase (XO) or glucose oxidase (GO). In contrast, when perfused with elastase or exposed to a hydrostatic left atrial pressure challenge, lungs isolated from hypoxia-preexposed rats developed the same acute edematous injury as lungs from normoxia-preexposed rats. The mechanism by which hypoxia preexposure conferred protection against H2O2 appeared to depend on hexose monophosphate shunt (HMPS)-dependent increases in lung glutathione redox cycle activity. First, before perfusion with GO, lungs from hypoxia-preexposed rats had increased glutathione peroxidase and glucose 6-phosphate dehydrogenase (but not catalase or glutathione reductase) activities compared with lungs from normoxia-preexposed rats. Second, after perfusion with GO, lungs from hypoxia-preexposed rats had increased H2O2 reducing equivalents, as reflected by increased GSH/GSSG and NADPH/NADPH+, compared with lungs from normoxia-preexposed rats. Third, pretreatment of rats with an HMPS inhibitor, (6-aminonicotinamide) or a glutathione reductase inhibitor, [1,3-bis(2-chloroethyl)-1-nitrosourea] prevented hypoxia-conferred protection against H2O2-mediated acute edematous injury in isolated lungs. These findings suggest that increased detoxification of H2O2 by glutathione redox cycle and HMPS-dependent mechanisms contributes to tolerance to hyperoxia and resistance to H2O2 of lungs from hypoxia-preexposed rats.  相似文献   

3.
Oxidative stress due to activated neutrophils, macrophages and endothelial cells plays a crucial role in acute lung injury. This study compares the effects of the nonradical oxidants hypochlorite (HOCl) and hydrogen peroxide (H2O2) on pulmonary artery pressure [PAPtorr], capillary filtration coefficient (Kf,c), tissue lipid peroxidation (LPO) and reduced glutathione (GSH) depletion. HOCl, H2O2 (1000 nmol min(-1)) or buffer (control) is infused into isolated rabbit lungs. PAP, K(f,c) and lung weight were measured. Experiments were terminated after 105 min or when fluid retention exceeded 50 g. Lung tissue was analyzed for LPO products and GSH. The oxidants induced comparable maximum effects. However, the patterns of lung injury were distinct: H2O2 infusion evoked an early biphasic pressure response (DeltaPAPmax 2.8+/-0.22/4.2+/-0.37 after 5.7+/-1.4/39+/-4.0 min) and a sixfold increase in Kf,c after 90 min. HOCl application caused a late pressure response (DeltaPAPmax 7.6+/-1.7 after 50.6+/-3.7 min) and a sevenfold increase in Kf,c after 60 min. H2O2-induced effects were attenuated by desferal. This may suggest an involvement of transition metal catalysed hydroxyl radical formation. Different oxidants induced distinct patterns of changes in PAP and Kf,c , which are accompanied by a comparable accumulation of LPO products and by a distinct degree of GSH depletion.  相似文献   

4.
We investigated the effect of xanthine (X) plus xanthine oxidase (XO) on pulmonary microvascular endothelial permeability in isolated rabbit lungs perfused with Krebs buffer containing bovine serum albumin (5 g/100 ml). Addition of five mU/ml XO and 500 microM X to the perfusate caused a twofold increase in the pulmonary capillary filtration coefficient (Kf,c) 30 min later without increasing the pulmonary capillary pressure. This increase was prevented by allopurinol or catalase but not by superoxide dismutase or dimethyl sulfoxide. Because these data implicated hydrogen peroxide (H2O2) as the injurious agent, we measured its concentration in the perfusate after the addition of X and XO for a 60-min interval. In the absence of lung tissue and albumin, H2O2 increased with time, reaching a concentration of approximately 250 microM by 60 min. If albumin (5 g/100 ml) was added to the perfusate, or in the presence of lung tissue, the corresponding values were 100 microM and less than 10 microM, respectively. To understand the mechanisms of H2O2 scavenging by lung tissue, we added a 250 microM bolus of H2O2 to the lung perfusate. We found that H2O2 was removed rapidly, with a half-life of 0.31 +/- 0.04 (SE) min. This variable was not increased significantly by inhibition of lung catalase activity with sodium azide or inhibition of the lung glutathione redox cycle with 1-chloro-2,4-dinitrobenzene. However, inhibition of both enzymatic systems increased the half-life of H2O2 removal to 0.71 +/- 0.09 (SE) min (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Intestinal ischemia-reperfusion is associated with the generation of reactive oxygen metabolites as well as remote, oxidant-mediated lung injury. Oxidants elicit endothelial redox imbalance and loss of vascular integrity by disorganizing several junctional proteins that contribute to the maintenance and regulation of the endothelial barrier. To determine the specific effect of redox imbalance on pulmonary vascular barrier integrity, microvascular permeability was determined in lungs of animals subjected to chemically induced redox imbalance. The effect of redox imbalance on microvascular permeability and endothelial junctional integrity in cultured lung microvascular cells was also determined. Whole lung and cultured pulmonary endothelial cell permeability both increased significantly in response to chemical redox imbalance. Thiol depletion also resulted in decreased endothelial cadherin content and disruption of the endothelial barrier. These deleterious effects of intracellular redox imbalance were blocked by pretreatment with exogenous glutathione. The results of this study suggest that redox imbalance contributes to pulmonary microvascular dysfunction by altering the content and/or spatial distribution of endothelial junctional proteins.  相似文献   

6.
We test the hypothesis that microvascular endothelial cells may undergo apoptosis in response to acute pulmonary venous hypertension. The isolated rabbit lungs were perfused in situ for 4 h with left atrial pressure of 0, 10, or 20 mmHg at a constant blood flow. Edema formation was monitored by lung weight gain. To assay for apoptosis, we performed agarose gel electrophoresis of DNA, in situ nick end labeling of DNA strand breaks, and electron microscopy. We also examined the levels of expression of Bcl-2, a suppressor of apoptosis, in microvascular endothelial cells using an immunohistochemical technique. In a vascular pressure-dependent fashion, we found apoptosis in endothelial cells of alveolar septal capillaries, as well as expression of Bcl-2 in arteriolar and venular endothelial cells. We conclude that acute pulmonary venous hypertension induces apoptosis in capillary endothelial cells but not in arteriolar and venular endothelial cells, suggesting that microvascular endothelial cell apoptosis is dependent on the levels of Bcl-2 expression and influences the formation or resolution of acute hydrostatic lung edema.  相似文献   

7.
Although the lung expresses procoagulant proteins under inflammatory conditions, underlying mechanisms remain unclear. Here, we addressed lung endothelial expression of tissue factor (TF), which initiates the coagulation cascade and expression of which signifies development of a procoagulant phenotype in the vasculature. To establish the model of acid-induced acute lung injury (ALI), we intranasally instilled anesthetized mice with saline or acid. Then 2 h later, we isolated pulmonary vascular cells for flow cytometry and confocal microscopy to detect the leukocyte antigen, CD45 and the endothelial markers VE-cadherin and von Willebrand factor (vWf). Acid increased both the number of vWf-expressing cells as well as TF and P-selectin expressions on these cells. All of these effects were markedly inhibited by treating mice with antiplatelet serum, suggesting the involvement of platelets. The increased expressions of TF, vWf, and P-selectin in response to acid also occurred in platelets. Moreover, the effects were replicated in endothelial cells derived from isolated, blood-perfused lungs. However, the effect was inhibited completely in lungs perfused with platelet-depleted and, to a lesser extent, with leukocyte-depleted blood. Acid injury increased endothelial expressions of the platelet proteins, CD41 and CD42b, providing evidence that platelet proteins were transferred to the vascular surface. Reactive oxygen species (ROS) were implicated in these responses, in that the endothelial and platelet protein expressions were inhibited. We conclude that acid-induced ALI causes NOX2-mediated ROS generation that activates platelets, which then generate a procoagulant endothelial surface.  相似文献   

8.
Because reactive O2 metabolites have been demonstrated to be potent mediators of vascular dysfunction and are synthesized by lung tissue, their involvement as mediators of oleic acid (OA)-induced pulmonary edema in the isolated Krebs-perfused rabbit lung was assessed. Injection of OA (0.1 ml) into the pulmonary artery after vehicle pretreatment induced marked increases in lung weight [50.4 +/- 13.9 vs. 4.2 +/- 2.0 (SE) g 45 min after OA or vehicle, respectively, P less than 0.05], an index of pulmonary edema, and airway pressure. OA also caused a significant though minimal increase in pulmonary arterial pressure. Pretreatment with catalase (1,000 U/ml), a scavenger of H2O2, significantly (P less than 0.05, Friedman's) attenuated the increases in lung weight (50.4 +/- 13.9 vs. 15.1 +/- 4.9 g), airway pressure, and pulmonary arterial pressure. In contrast to catalase, pretreatment with Cu-tryptophan (40 microM), a lipid-soluble scavenger of superoxide, provided no protective effect by itself, nor was there any potentiation of protection when combined with catalase. Further evidence implicating O2 metabolites in OA-induced edema was obtained by electron paramagnetic resonance (EPR) spectroscopy of perfusate samples to which the spin trap, sodium 3,5-dibromo-4-nitrosobenzenesulfonate (10 mM), was added. Analysis of these samples revealed the presence of free radicals after OA. Pretreatment with catalase (1,000 U/ml) and superoxide dismutase (250 U/ml) attenuated the EPR signal, indicating that proximal formation of O2 free radicals was in part responsible for the signal. These results suggest that reactive O2 metabolites are mediators of OA-induced pulmonary edema in the isolated perfused rabbit lung.  相似文献   

9.
Disruption of endothelial barrier properties with development of noncardiogenic pulmonary edema is a major threat in lung ischemia-reperfusion (I/R) injury that occurs under conditions of lung transplantation. Inhaled nitric oxide (NO) reduced vascular leakage in lung I/R models, but the efficacy of this agent may be limited. We coadministered NO and zaprinast, a cGMP-specific phosphodiesterase inhibitor, to further augment the NO-cGMP axis. Isolated, buffer-perfused rabbit lungs were exposed to 4.5 h of warm ischemia. Reperfusion provoked a transient elevation in pulmonary arterial pressure and a negligible rise in microvascular pressure followed by a massive increase in the capillary filtration coefficient and severe lung edema formation. Inhalation of 10 parts/million of NO or intravascular application of 100 microM zaprinast on reperfusion both reduced pressor response and moderately attenuated vascular leakage. Combined administration of both agents induced no additional vasodilation at constant microvascular pressures, but additively protected against capillary leakage paralleled by a severalfold increase in perfusate cGMP levels. In conclusion, combining low-dose NO inhalation and phosphodiesterase inhibition may be suitable for the maintenance of graft function in lung transplantation by amplifying the beneficial effect of the NO-cGMP axis and avoiding toxic effects of high NO doses.  相似文献   

10.
We studied the synergistic interaction between platelet-activating factor (PAF) and protamine sulfate, a cationic protein that causes pulmonary endothelial injury, in isolated rat lungs perfused with a physiological salt solution. A low dose of protamine (50 micrograms/ml) increased pulmonary artery perfusion pressure (Ppa) but did not increase wet lung-to-body weight ratio after 20 min. Pretreatment of the lungs with a noninjurious dose of PAF (1.6 nM) 10 min before protamine markedly potentiated protamine-induced pulmonary vasoconstriction and resulted in severe lung edema and increased lung tissue content of 6-keto-prostaglandin F1 alpha, thromboxane B2, and leukotriene C4. Pulmonary microvascular pressure (Pmv), measured by double occlusion, was markedly increased in lungs given PAF and protamine. These potentiating effects of PAF were blocked by WEB 2086 (10(-5) M), a specific PAF receptor antagonist. Pretreatment of the lungs with a high dose of histamine (10(-4) M) failed to enhance the effect of protamine on Ppa, Pmv, or wet lung-to-body weight ratio. Furthermore, PAF pretreatment enhanced elastase-, but not H2O2-, induced lung edema. To assess the role of hydrostatic pressure in edema formation, we compared lung permeability-surface area products (PS) in papaverine-treated lungs given either protamine alone or PAF + protamine and tested the effect of mechanical elevation of Pmv on protamine-induced lung edema. In the absence of vasoconstriction, PAF did not potentiate protamine-induced increase in lung PS. On the other hand, mechanically raising Pmv in protamine-treated lungs to a level similar to that measured in lungs given PAF + protamine did not result in a comparable degree of lung edema. We conclude that PAF potentiates protamine-induced lung edema predominantly by enhanced pulmonary venoconstriction. However, a pressure-independent effect of PAF on lung vasculature cannot be entirely excluded.  相似文献   

11.
The role of platelets in lung injury has not been well defined. In the present study of isolated perfused rat lungs, phorbol myristate acetate (PMA; 0.15 microgram/ml) or platelets (6.7 X 10(4)/ml) alone did not discernibly change the pulmonary arterial pressure (PAP) or lung weight (LW). However, the combination of platelets and PMA drastically increased the PAP and LW (delta PAP 26.2 +/- 1.0 mmHg, delta LW 2.7 +/- 0.4 g). delta PAP was positively correlated with the increase in thromboxane B2 produced by infusion of platelets and PMA (thromboxane B2 = 35.6 + 0.97 delta PAP, r = 0.67, P less than 0.01). The hypertension and edema formation induced by PMA and platelets were strongly attenuated by indomethacin, an inhibitor of platelet cyclooxygenase (delta PAP 5.6 +/- 2.0 mmHg, P less than 0.001; delta LW 0.0 +/- 0.1 g, P less than 0.001), and by imidazole, an inhibitor of thromboxane A2 synthase (PAP 8.0 +/- 2.5 mmHg, P less than 0.001; LW 0.0 +/- 0.3 g, P less than 0.01). Inactivation of platelet lipoxygenase with nordihydroguaiaretic acid mildly depressed pulmonary pressure but did not affect delta LW (delta PAP 18.9 +/- 1.6 mmHg, P less than 0.05; delta LW 3.1 +/- 0.3 g, P greater than 0.05). In vitro experiments showed that the capacity of platelets to release oxygen radicals was only 2.6% of that found for granulocytes. These results suggest that platelets may be activated by PMA to increase PAP and vascular permeability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We observed that the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L- phenylalanine (FMLP) induced pulmonary edema when polymorphonuclear leukocytes (PMNs) were added to isolated constant-flow buffer-perfused rabbit lungs. This study was designed to test the hypothesis that PMNs activated by FMLP induced lung injury by the modulation of reactive oxygen species (ROS), cyclooxygenase products, or cysteinyl leukotrienes (LTs). Addition of FMLP alone did not increase microvascular permeability (Kf). When PMNs were added to the isolated lung, FMLP caused an 80% increase in Kf. Wet-to-dry weight ratio was also significantly increased with PMNs + FMLP compared with FMLP only. There was a significant positive correlation between total myeloperoxidase activity in lung tissue and Kf values after FMLP (30 min). Pretreatment with two dissimilar cyclooxygenase inhibitors, meclofenamate or ibuprofen, had no effect on the PMN + FMLP-induced increase in Kf. However, the ROS inhibitor catalase and the nonantioxidant LT synthesis blocker MK 886 inhibited the PMN + FMLP increase in Kf. Perfusate levels of LTs (LTC4, -D4, and -E4) were significantly increased from baseline values 30 min after FMLP. Both MK 886 and catalase suppressed the elevation of LTs after PMN + FMLP. These results indicate that FMLP increased a pulmonary microvascular permeability in isolated buffer-perfused rabbit lungs that is PMN dependent and mediated by LT produced possibly by a result of ROS production.  相似文献   

13.
14.
Hyperoxia and infused granulocytes act synergistically in producing a nonhydrostatic high-permeability lung edema in the isolated perfused rabbit lung within 4 h, which is substantially greater than that seen with hyperoxia alone. We hypothesized that the interaction between hyperoxia and granulocytes was principally due to a direct effect of hyperoxia on the lung itself. Isolated perfused rabbit lungs that were preexposed to 2 h of hyperoxia (95% O2-5% CO2) prior to the infusion of unstimulated granulocytes (under normoxic conditions) developed significant nonhydrostatic lung edema (P = 0.008) within 2 h when compared with lungs that were preexposed to normoxia (15% O2-5% CO2) prior to granulocyte perfusion. The edema in the hyperoxic-preexposed lungs was accompanied by significant increases in bronchoalveolar lavage (BAL) protein, BAL granulocytes, BAL thromboxane and prostacyclin levels, perfusate chemotactic activity, and lung lipid peroxidation. These findings suggest that the synergistic interaction between hyperoxia and granulocytes in producing acute lung injury involves a primary effect of hyperoxia on the lung itself.  相似文献   

15.
Strange, Charlie, Andrew Gottehrer, Karen Birmingham, andJohn E. Heffner. Platelets attenuate oxidant-induced permeability in endothelial monolayers: glutathione-dependent mechanisms.J. Appl. Physiol. 81(4):1701-1706, 1996.We studied the effects of adding washedhuman platelets or platelets with nonintact glutathione redox cycles toendothelial cell monolayers treated with glucose oxidase to initiateoxidant stress and increase permeability. Changes in125I-labeled albumintransmonolayer movement were used as the index of monolayerpermeability. Washed human platelets attenuated oxidant-induced increases in albumin flux. Platelets treated with1,3-bis(2-chloroethyl)-1-nitrosurea, 1-chloro-2,4-dinitrobenzene, orbuthionine sulfoximine to inhibit selective enzymatic steps inthe glutathione redox cycle decreased permeability to a lesser degree.We conclude that 1) washed human platelets attenuate monolayer permeability defects in aorticendothelial monolayers exposed to glucose oxidase and2) the protective effects ofplatelets are partially dependent on an intact plateletglutathione redox cycle.

  相似文献   

16.
We investigated whether platelet-activating factor (PAF) increased epithelial or endothelial permeability in isolated-perfused rabbit lungs. PAF was either injected into the pulmonary artery or instilled into the airway of lungs perfused with Tyrode's solution containing 1% bovine serum albumin. The effect of adding neutrophils or platelets to the perfusate was also tested. Perfusion was maintained 20-40 min after adding PAF and then a fluid filtration coefficient (Kf) was determined to assess vascular permeability. At the end of each experiment, one lung was lavaged, and the lavagate protein concentration (BALP) was determined. Wet weight-to-dry weight ratios (W/D) were determined on the other lung. PAF added to the vascular space increased peak pulmonary arterial pressure (Ppa) from 13.5 +/- 3.1 (mean +/- SE) to 24.2 +/- 3.3 cmH2O (P less than 0.05). The effect was amplified by platelets [Ppa to 70.8 +/- 8.0 cmH2O (P less than 0.05)] but not by neutrophils [Ppa to 22.0 +/- 1.4 cmH2O (P less than 0.05)]. Minimal changes in Ppa were observed after instilling PAF into the airway. The Kf, W/D, and BALP of untreated lungs were not increased by injecting PAF into the vasculature or into the air space. The effect of PAF on Kf, W/D, and BALP was unaltered by adding platelets or neutrophils to the perfusate. PAF increases intravascular pressure (at a constant rate of perfusion) but does not increase epithelial or endothelial permeability in isolated-perfused rabbit lungs.  相似文献   

17.
Until now, direct micropuncture measurements of vascular pressure in lung have been limited to small vessels less than 100 microns on the pleural surface. On the other hand, direct pressure measurements using small catheters (less than 1-mm OD) in pulmonary vessels have been limited to those greater than 1.2 mm. We measured pressure in intermediate-sized microvessels (300-700 microns) using the micropuncture method in isolated perfused rabbit lungs. These microvessels are located 2 or 3 mm beneath the pleura. We exposed them by microsurgery and punctured the relatively thick-walled vessels with specially configured micropipettes. We exposed one pulmonary microvessel in each rabbit lung by microsurgery on the left middle lobe. In 15 rabbit lungs we measured pressure in a total of six small arteries (275- to 470-microns diam) and nine small veins (300- to 700-microns diam) under high zone 3 conditions, near the zone 2/3 boundary. We found approximately 35% of the total pulmonary vascular pressure drop in arteries greater than 275-microns diam and 7% in veins greater than 300-microns diam. In veins greater than 500-microns diam, there was no measurable pressure drop. After the measurements, we froze the lung and confirmed that there was no detectable interstitial or alveolar edema in the cross sections of the punctured site. Our data are compatible with those of other investigators who have used isolated perfused rabbit lungs under similar experimental conditions.  相似文献   

18.
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. Elevation of hydrostatic pressure induced Ca(2+)-dependent endothelial NO production and caused a net fluid shift into the alveolar space, which was predominantly attributable to impaired fluid reabsorption. Inhibition of NO production or soluble guanylate cyclase reconstituted alveolar fluid reabsorption, whereas fluid clearance was blocked by exogenous NO donors or cGMP analogs. In isolated mouse lungs, hydrostatic edema formation was attenuated by NO synthase inhibition. Similarly, edema formation was decreased in isolated mouse lungs of endothelial NO synthase-deficient mice. Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.  相似文献   

19.
This study investigates the potential role of the ferric/ferryl redox cycle of myoglobin (Mb) in the development of endothelial cell injury. Bovine aortic endothelial cells were incubated with ferric Mb (0.5-100 micro M) in the presence or absence of low steady states of H(2)O(2) (3-4 micro M) generated by glucose oxidase (GOX). The reaction of ferric Mb with H(2)O(2) generated ferryl Mb as monitored spectrophotometrically. Ferryl Mb formation correlated with the induction of apoptosis as indicated by morphological criteria, caspase 3 activation, phosphatidylserine (PS) externalization, and nuclear condensation by Hoechst 33342 staining. The addition of ascorbate or catalase inhibited the formation of ferryl Mb and the onset of apoptosis, whereas apoptosis was enhanced in cells depleted of intracellular glutathione by pretreatment with buthionine sulfoximine. Mb and Mb/GOX suppressed cell cycle progression, but only Mb/GOX produced significant cell loss revealed by the accumulation of sub G1 events. These results suggest a role for the Mb redox cycle in the induction of endothelial cell apoptosis, which may be relevant in the pathophysiology of diseases characterized by the release of Mb from damaged muscle.  相似文献   

20.
Redox regulation and carbohydrate recognition are potent molecular mechanisms which can contribute to platelet aggregation in response to various stimuli. The purpose of this study is to investigate the relationship between these mechanisms and to examine whether cell surface glycocalyx and cell stiffness of human platelets are sensitive to the redox potential formed by glutathione. To this end, human platelets were treated with different concentrations (0.05 μM to 6 mM) and ratios of reduced or oxidized glutathione (GSH or GSSG), and platelet morphological, mechanical, and functional properties were determined using conventional light microscopy, atomic force microscopy, and lectin-induced cell aggregation analysis. It was found that lowering the glutathione redox potential changed platelet morphology and increased platelet stiffness as well as modulated nonuniformly platelet aggregation in response to plant lectins with different carbohydrate-binding specificity including wheat germ agglutinin, Sambucus nigra agglutinin, and Canavalia ensiformis agglutinin. Extracellular redox potential and redox buffering capacity of the GSSG/2GSH couple were shown to control the availability of specific lectin-binding glycoligands on the cell surface, while the intracellular glutathione redox state affected the general functional ability of platelets to be aggregated independently of the type of lectins. Our data provide the first experimental evidence that glutathione as a redox molecule can affect the mechanical stiffness of human platelets and induce changes of the cell surface glycocalyx, which may represent a new mechanism of redox regulation of intercellular contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号