首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The negative inotropic effect of acetylcholine (ACh) in atrial muscle can be accounted for by a decrease of a voltage- and time-dependent slow inward current (Isi) carried by Ca2+/Na+ and an increase of outward time-dependent current carried by K+ (IK1) through inwardly rectifying channels. The negative inotropic effect of ACh in ventricular muscle is associated with a reduction of Isi; there is no important effect of ACh on IK1 in ventricular muscle. Because atrial and ventricular muscles display IK1 that is sensitive to Ba2+ and have similar numbers of muscarinic receptor sites, it is concluded that ventricular muscle lacks a metabolic link between the muscarinic receptor and inwardly rectifying K+ channels. Although there is much evidence for cyclic nucleotides as the mediator between muscarinic receptors and Isi channels, cyclic nucleotides do not seem to connect these receptors with inwardly rectifying K+ channels. According to this hypothesis, identification of a metabolic link between muscarinic receptors and IK1 channels should be demonstrable in atrial but not ventricular muscle.  相似文献   

2.
3.
G protein-activated inwardly rectifying K(+) (GIRK) channels, expressed in atrial myocytes, various neurons, and endocrine cells, represent the paradigmatic target of beta gamma subunits released from activated heterotrimeric G proteins. These channels contribute to physiological slowing of cardiac frequency and synaptic inhibition. They are activated by beta gamma dimers released upon stimulation of receptors coupled to pertussis toxin-sensitive G proteins (G(i/o)), whereas beta gamma released from G(s) do not converge on the channel subunits. This is in conflict with the finding that dimeric combinations of various beta and gamma subunits can activate GIRK channels with little specificity. In the present study, we have overexpressed the major subtypes of cardiac beta-adrenergic receptors (beta(1)-AR and beta(2)-AR) in atrial myocytes by transient transfection. Whereas in native cells beta-adrenergic stimulation with isoproterenol failed to induce measurable GIRK current, robust currents were recorded from myocytes overexpressing either beta(1)-AR or beta(2)-AR. Whereas the beta(2)-AR-induced current showed the same sensitivity to pertussis toxin as the current evoked by the endogenous G(i/o)-coupled muscarinic M(2) receptor, isoproterenol-activated currents were insensitive to pertussis toxin treatment in beta(1)-AR-overexpressing myocytes. In contrast to a recent publication (Leaney, J. L., Milligan, G., and Tinker, A. (2000) J. Biol. Chem. 275, 921-929), sizable GIRK currents could also be activated by isoproterenol when the signaling pathway was reconstituted by transient transfection in two different standard cell lines (Chinese hamster ovary and HEK293). These results demonstrate that specificity of receptor-G protein signaling can be disrupted by overexpression of receptors. Moreover, the alpha subunit of heterotrimeric G proteins does not confer specificity to G beta gamma-mediated signaling.  相似文献   

4.
In neuronal and atrial tissue, G protein-gated inwardly rectifying K(+) channels (Kir3.x family) are responsible for mediating inhibitory postsynaptic potentials and slowing the heart rate. They are activated by Gbetagamma dimers released in response to the stimulation of receptors coupled to inhibitory G proteins of the G(i/o) family but not receptors coupled to the stimulatory G protein G(s). We have used biochemical, electrophysiological, and molecular biology techniques to examine this specificity of channel activation. In this study we have succeeded in reconstituting such specificity in an heterologous expression system stably expressing a cloned counterpart of the neuronal channel (Kir3.1 and Kir3.2A heteromultimers). The use of pertussis toxin-resistant G protein alpha subunits and chimeras between G(i1) and G(s) indicate a central role for the G protein alpha subunits in determining receptor specificity of coupling to, but not activation of, G protein-gated inwardly rectifying K(+) channels.  相似文献   

5.
K Lucchesi  E Moczydlowski 《Neuron》1990,4(1):141-148
Toxin I (DTX-I), a 60-residue peptide belonging to the dendrotoxin family of Mamba snake neurotoxins, is a potent inhibitor of various types of voltage-gated K+ currents. To investigate the sensitivity of another major class of K+ channels to DTX-I, the effect of this toxin was studied on single Ca2(+)-activated K+ channels from rat skeletal muscle incorporated into planar bilayers. Internal (intracellular) DTX-I was found to induce reversibly a long-lived (tau = 40 s), inwardly rectifying subconductance state with 66% of the normal open-state current at +20 mV. Analysis of the kinetics of substate formation and the current-voltage behavior of the substate suggest that binding of DTX-I modifies conduction of K+ ions through the pore without affecting the Ca2+ dependence or voltage dependence of gating. These results identify a unique internal binding site for DTX-I (Kd = 90 nM in 50 mM KCl) on a ubiquitous class of high-conductance, Ca2(+)-activated K+ channels.  相似文献   

6.
Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K(+) efflux from macrophages associated with caspase-1 activation and increased IL-1β release. The mechanism of this toxin-induced K(+) efflux is unknown. The goals of the current study were to determine whether LeTx-induced K(+) efflux from macrophages is mediated by toxin effects on specific K(+) channels and whether altered K(+)-channel activity is involved in LeTx-induced IL-1β release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K(+) channels that have been identified in mouse macrophages: Ba(2+)-sensitive inwardly rectifying K(+) (Kir) channels and 4-aminopyridine-sensitive outwardly rectifying voltage-gated K(+) (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LF(E687C)) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1β. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1β, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1β. Activation of caspase-1 was not required for LeTx-induced activation of either of the K(+) channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1β involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation.  相似文献   

7.
Gbetagamma subunits are known to bind to and activate G-protein-activated inwardly rectifying K(+) channels (GIRK) by regulating their open probability and bursting behavior. Studying G-protein regulation of either native GIRK (I(KACh)) channels in feline atrial myocytes or heterologously expressed GIRK1/4 channels in Chinese hamster ovary cells and HEK 293 cells uncovered a novel Gbetagamma subunit mediated regulation of the inwardly rectifying properties of these channels. I(KACh) activated by submaximal concentrations of acetylcholine exhibited a approximately 2.5-fold stronger inward rectification than I(KACh) activated by saturating concentrations of acetylcholine. Similarly, the inward rectification of currents through GIRK1/4 channels expressed in HEK cells was substantially weakened upon maximal stimulation with co-expressed Gbetagamma subunits. Analysis of the outward current block underlying inward rectification demonstrated that the fraction of instantaneously blocked channels was reduced when Gbetagamma was over-expressed. The Gbetagamma induced weakening of inward rectification was associated with reduced potencies for Ba(2+) and Cs(+) to block channels from the extracellular side. Based on these results we propose that saturation of the channel with Gbetagamma leads to a conformational change within the pore of the channel that reduced the potency of extracellular cations to block the pore and increased the fraction of channels inert to a pore block in outward direction.  相似文献   

8.
G(i) protein-coupled receptors such as the M(2) muscarinic acetylcholine receptor (mAChR) and A(1) adenosine receptor have been shown to activate G protein-activated inwardly rectifying K(+) channels (GIRKs) via pertussis toxin-sensitive G proteins in atrial myocytes and in many neuronal cells. Here we show that muscarinic M(2) receptors not only activate but also reversibly inhibit these K(+) currents when stimulated with agonist for up to 2 min. The M(2) mAChR-mediated inhibition of the channel was also observed when the channels were first activated by inclusion of guanosine 5'-O-(thiotriphosphate) in the pipette. Under these conditions the M(2) mAChR-induced inhibition was quasi-irreversible, suggesting a role for G proteins in the inhibitory process. In contrast, when GIRK currents were maximally activated by co-expressing exogenous Gbetagamma, the extent of acetylcholine (ACh)-induced inhibition was significantly reduced, suggesting competition between the receptor-mediated inhibition and the large pool of available Gbetagamma subunits. The signaling pathway that led to the ACh-induced inhibition of GIRK channels was unaffected by pertussis toxin pretreatment. Furthermore, the internalization and agonist-induced phosphorylation of M(2) mAChR was not required because a phosphorylation- and internalization-deficient mutant of the M(2) mAChR was as potent as the wild-type counterpart. Pharmacological agents modulating various protein kinases or phosphatidylinositol 3-kinase did not affect the inhibition of GIRK currents. Furthermore, the signaling pathway that mediates GIRK current inhibition was found to be membrane-delimited because bath application of ACh did not inhibit GIRK channel activity in cell-attached patches. Other G protein-coupled receptors including M(4) mAChR and alpha(1A) adrenergic receptors also caused the inhibition, whereas other G protein-coupled receptors including A(1) and A(3) adenosine receptors and alpha(2A) and alpha(2C) adrenergic receptors could not induce the inhibition. The presented results suggest the existence of a novel signaling pathway that can be activated selectively by M(2) and M(4) mAChR but not by adenosine receptors and that involves non-pertussis toxin-sensitive G proteins leading to an inhibition of Gbetagamma-activated GIRK currents in a membrane-delimited fashion.  相似文献   

9.
Platelet-activating factor (PAF), an inflammatory phospholipid, induces ventricular arrhythmia via an unknown ionic mechanism. We can now link PAF-mediated cardiac electrophysiological effects to inhibition of a two-pore domain K(+) channel [TWIK-related acid-sensitive K(+) background channel (TASK-1)]. Superfusion of carbamyl-PAF (C-PAF), a stable analog of PAF, over murine ventricular myocytes causes abnormal automaticity, plateau phase arrest of the action potential, and early afterdepolarizations in paced and quiescent cells from wild-type but not PAF receptor knockout mice. C-PAF-dependent currents are insensitive to Cs(+) and are outwardly rectifying with biophysical properties consistent with a K(+)-selective channel. The current is blocked by TASK-1 inhibitors, including protons, Ba(2+), Zn(2+), and methanandamide, a stable analog of the endogenous lipid ligand of cannabinoid receptors. In addition, when TASK-1 is expressed in CHO cells that express an endogenous PAF receptor, superfusion of C-PAF decreases the expressed current. Like C-PAF, methanandamide evoked spontaneous activity in quiescent myocytes. C-PAF- and methanandamide-sensitive currents are blocked by a specific protein kinase C (PKC) inhibitor, implying overlapping signaling pathways. In conclusion, C-PAF blocks TASK-1 or a closely related channel, the effect is PKC dependent, and the inhibition alters the electrical activity of myocytes in ways that would be arrhythmogenic in the intact heart.  相似文献   

10.
A K+ channel from salt-tolerant melon inhibited by Na+   总被引:1,自引:0,他引:1  
  相似文献   

11.
Recently, two K(+) channel genes, ZMK1 and ZMK2, were isolated from maize coleoptiles. They are expressed in the cortex and vasculature, respectively. Expression in Xenopus oocytes characterized ZMK1 as an inwardly rectifying K(+) channel activated by external acidification, while ZMK2 mediates voltage-independent and proton-inhibited K(+) currents. In search of the related gene products in planta, we applied the patch-clamp technique to protoplasts isolated from the cortex and vasculature of Zea mays coleoptiles and mesocotyls. In the cortex, a 6-8 pS K(+) channel gave rise to inwardly rectifying K(+) currents. Like ZMK1, this channel was activated by apoplastic acidification. In contrast, protoplasts from vascular tissue expressing the sucrose transporter ZmSUT1 were dominated by largely voltage-independent K(+) currents with a single-channel conductance of 22 pS. The pronounced sensitivity to the extracellular protons Ca(2+), Cs(+) and Ba(2+) is reminiscent of ZMK2 properties in oocytes. Thus, the dominant K(+) channels in cortex and vasculature most likely represent the gene products of ZMK1 and ZMK2. Our studies on the ZMK2-like channels represent the first in planta analysis of a K+ channel that shares properties with the AKT3 K(+) channel family. Keywords: K(+) channel, voltage-independent, proton block, maize coleoptile.  相似文献   

12.
Andersen-Tawil syndrome is characterized by periodic paralysis, ventricular ectopy, and dysmorphic features. Approximately 60% of patients exhibit loss-of-function mutations in KCNJ2, which encodes the inwardly rectifying K(+) channel pore forming subunit Kir2.1. Here, we report the identification of a novel KCNJ2 mutation (G211T), resulting in the amino acid substitution D71Y, in a patient presenting with signs and symptoms of Andersen-Tawil syndrome. The functional properties of the mutant subunit were characterized using voltage-clamp experiments on transiently transfected HEK-293 cells and neonatal mouse ventricular myocytes. Whole-cell current recordings of transfected HEK-293 cells demonstrated that the mutant protein Kir2.1-D71Y fails to form functional ion channels when expressed alone, but co-assembles with wild-type Kir2.1 subunits and suppresses wild-type subunit function. Further analysis revealed that current suppression requires at least two mutant subunits per channel. The D71Y mutation does not measurably affect the membrane trafficking of either the mutant or the wild-type subunit or alter the kinetic properties of the currents. Additional experiments revealed that expression of the mutant subunit suppresses native I(K1) in neonatal mouse ventricular myocytes. Simulations predict that the D71Y mutation in human ventricular myocytes will result in a mild prolongation of the action potential and potentially increase cell excitability. These experiments indicate that the Kir2.1-D71Y mutant protein functions as a dominant negative subunit resulting in reduced inwardly rectifying K(+) current amplitudes and altered cellular excitability in patients with Andersen-Tawil syndrome.  相似文献   

13.
To fertilize, mammalian sperm must complete a maturational process called capacitation. It is thought that the membrane potential of sperm hyperpolarizes during capacitation, possibly due to the opening of K(+) channels, but electrophysiological evidence is lacking. In this report, using patch-clamp recordings obtained from isolated mouse spermatogenic cells we document the presence of a novel K(+)-selective inwardly rectifying current. Macroscopic current activated at membrane potentials below the equilibrium potential for K(+) and its magnitude was dependent on the external K(+) concentration. The channels selected K(+) over other monovalent cations. Current was virtually absent when external K(+) was replaced with Na(+) or N-methyl-D-glucamine. Addition of Cs(+) or Ba(2+) (IC(50) of approximately 15 microM) to the external solution effectively blocked K(+) current. Dialyzing the cells with a Mg(2+)-free solution did not affect channel activity. Cytosolic acidification reversibly inhibited the current. We verified that the resting membrane potential of mouse sperm changed from -52 +/- 6 to -66 +/- 9 mV during capacitation in vitro. Notably, application of 0.3-1 mM Ba(2+) during capacitation prevented this hyperpolarization and decreased the subsequent exocytotic response to zona pellucida. A mechanism is proposed whereby opening of inwardly rectifying K(+) channels may produce hyperpolarization under physiological conditions and contribute to the cellular changes that give rise to the capacitated state in mature sperm.  相似文献   

14.
Two cDNAs that encode the G protein-coupled inwardly rectifying K(+) channel (GIRK, Kir3) of tunicate tadpoles (tunicate G protein-coupled inwardly rectifying K(+) channel-A and -B; TuGIRK-A and -B) have been isolated. The deduced amino acid sequences showed approximately 60% identity with the mammalian Kir3 family. Detected by whole mount in situ hybridization, both TuGIRK-A and -B were expressed similarly in the neural cells of the head and neck region from the tail bud stage to the young tadpole stage. By co-injecting cRNAs of TuGIRK-A and G protein beta(1)/gamma(2) subunits (Gbetagamma) in Xenopus oocytes, an inwardly rectifying K(+) current was expressed. In contrast, coinjection of TuGIRK-B with Gbetagamma did not express any current. When both TuGIRK-A and -B were coexpressed together with Gbetagamma, an inwardly rectifying K(+) current was also detected. The properties of this current clearly differed from those of TuGIRK-A current, since it displayed a characteristic decline of the macroscopic conductance at strongly hyperpolarized potentials. TuGIRK-A/B current also differed from TuGIRK-A current in terms of the lower sensitivity to the Ba(2+) block, the higher sensitivity to the Cs(+) block, and the smaller single channel conductance. Taken together, we concluded that TuGIRK-A and -B form functional heteromultimeric G protein-coupled inwardly rectifying K(+) channels in the neural cells of the tunicate tadpole. By introducing a mutation of Lys(161) to Thr in TuGIRK-B, TuGIRK-A/B channels acquired a higher sensitivity to the Ba(2+) block and a slightly lower sensitivity to the Cs(+) block, and the decrease in the macroscopic conductance at hyperpolarized potentials was no longer observed. Thus, the differences in the electrophysiological properties between TuGIRK-A and TuGIRK-A/B channels were shown to be, at least partly, due to the presence of Lys(161) at the external mouth of the pore of the TuGIRK-B subunit.  相似文献   

15.
The effect of a new PAF antagonist BN 50739 was studied on PAF-induced [3H]-serotonin release from washed rabbit platelets in vitro and on PAF-induced hypotension in vivo. BN 50739 competitively inhibited PAF-induced [3H]-serotonin release from the platelets in a dose-dependent manner. In the presence of 4, 10 and 50 nM of BN 50739, the concentration of PAF inducing 50% maximal [3H]-serotonin release from the platelets (EC50) increased from 2.15 nM to 5.10, 45.10 and 900 nM, respectively. The IC50 of BN 50739 for PAF (10 nM) induced [3H]-serotonin release was 3.67 nM. Under the same experimental condition, the IC50s of BN 50726, BN 50730, BN 50741, WEB 2086, SRI 63-441 and BN 52021 were 5.40, 4.61, 6.88, 5.98, 40.90 nM and 14.90 microM, respectively. PAF-induced hypotension in conscious rats was also inhibited dose-dependently by i.p. pretreatment of BN 50739 (3 and 10 mg/kg). PAF-induced hypotension was diminished both in magnitude and duration in rats pretreated with BN 50739. These data taken together indicate that BN 50739 is a most potent PAF antagonist in vitro and in vivo.  相似文献   

16.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

17.
18.
多不饱和脂肪酸对成年雪貂心肌钾通道的作用   总被引:7,自引:0,他引:7  
Xiao YF  Morgan JP  Leaf A 《生理学报》2002,54(4):271-281
本研究是在成年雪貂的心肌上研究多不饱和脂肪酸(PUFA)对电压门控钾通道的效应。我们观察到,n-3 PUFA能抑制短时性外向钾电流(Ito)和延迟整流钾电流(IK),而对内向整流钾电流(IK1)则没有明显影响。二十二碳六烯酸(DHA)对Ito和Ik能产生浓度依赖性的抑制作用,其IC50分别为7.5和20μmol/L,但不影响IK1。二十碳五烯酸(EPA)对这三种钾通道的作用与DHA相似。花生四烯酸(5或10μmol/L)先引起IK的抑制,然后引起IK,AA的激活;用环氧合酶抑制剂消炎痛可以阻断花生四烯酸激活IK,AA的作用。不具有抗心律失常作用的单不饱和脂肪酸和饱和脂肪酸都不明显影响这些钾通道的活性。上述实验结果证明,n-3 PUFA能抑制心肌细胞的Ito和IK,但和我们以前报道的PUFA对心肌钠电流和钙电流的作用相比,其对Ito和IK抑制作用的效能较低。n-3 PUFA的抗心律失常效应可能与它们抑制心肌钠、钙、钾通道的作用有关。  相似文献   

19.
GTP-binding (G) proteins have been shown to mediate activation of inwardly rectifying potassium (K+) channels in cardiac, neuronal and neuroendocrine cells. Here, we report functional expression of a recombinant inwardly rectifying channel which we call KGP (or hpKir3.4), to signify that it is K+ selective, G-protein-gated and isolated from human pancreas. KGP expression in Xenopus oocytes resulted in sizeable basal (or agonist-independent) currents while coexpression with a G-protein-linked receptor, yielded additional agonist-induced currents. Coexpression of KGP and hGIRK1 (a human brain homolog of GIRK1/Kir3.1) produced much larger basal currents than those observed with KGP or hGIRK1 alone, and upon coexpression with receptor, similarly large agonist-induced currents could be obtained. Pertussis toxin treatment significantly diminished agonist-dependent currents due to either KGP or KGP/hGIRK1 expression. Interestingly, PTX also significantly reduced basal KGP or KGP/hGIRK1 currents, suggesting that basal activity is largely the result of G-protein gating as well. When the two channels were coexpressed with receptor, the relative increase in current elicited by agonist was similar whether KGP and hGIRK1 were expressed alone or together. When in vitro translated or when expressed in Xenopus oocytes or CHO mammalian cells, KGP gave rise to a nonglycosylated 45-kD protein. Antibodies directed against either KGP or hGIRK1 coprecipitated both proteins coexpressed in oocytes, providing evidence for the heteromeric assembly of the two channels and suggesting that the current potentiation seen with coexpression of the two channel subunits is due to specific interactions between them. An endogenous oocyte protein similar in size to KGP was also coprecipitated with hGIRK1.  相似文献   

20.
Acetylcholine signaling through muscarinic type 2 receptors activates atrial G protein-gated inwardly rectifying K(+) (Kir3) channels via the betagamma subunits of G proteins (Gbetagamma). Different combinations of recombinant Gbetagamma subunits have been shown to activate Kir3 channels in a similar manner. In native systems, however, only Gbetagamma subunits associated with the pertussis toxin-sensitive Galpha(i/o) subunits signal to K(+) channels. Additionally, in vitro binding experiments supported the notion that the C terminus of Kir3 channels interacts preferentially with Galpha(i) over Galpha(q). In this study we confirmed in two heterologous expression systems a preference of Galpha(i) over Galpha(q) in the activation of K(+) currents. To identify determinants of Gbetagamma signaling specificity, we first exchanged domains of Galpha(i) and Galpha(q) subunits responsible for receptor coupling selectivity and swapped their receptor coupling partners. Our results established that the G proteins, regardless of the receptor type to which they coupled, conferred specificity to Kir3 activation. We next tested signaling through chimeras between the Galpha(i) and Galpha(q) subunits in which the N terminus, the helical, or the GTPase domains of the Galpha subunits were exchanged. Our results revealed that the helical domain of Galpha(i) (residues 63-175) in the background of Galpha(q) could support Kir3 activation, whereas the reverse chimera could not. Moreover, the helical domain of the Galpha(i) subunit conferred "Galpha(i)-like" binding of the Kir3 C terminus to the Galpha(q) subunits that contained it. These results implicate the helical domain of Galpha(i) proteins as a critical determinant of Gbetagamma signaling specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号