首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Matrix metalloproteinases (MMPs) are critical mediators of tissue remodeling. Inappropriate regulation of MMPs causes many pathological events, including microbial invasion and inflammatory tissue damage. Some of the bacterial exoproteinases can effectively activate pro-MMPs (inactive zymogens) via limited proteolysis around their autoinhibitory domains. In addition, overproduction of nitric oxide (NO) may contribute to respiratory inflammation via the formation of reactive nitrogen species (RNS). Several studies have identified regulatory properties of NO/RNS on biomolecules due to functional modification of their cysteine residues. In fact, NO/RNS can mediate activation and expression of MMPs, because RNS can interact with a cysteine switch in the autoinhibitory domain, thus converting proMMPs into their active forms without proteolysis. Many studies have indicated that NO/RNS can participate in expression of various genes that affect immune-inflammatory responses, including MMPs. Although NO in some cases upregulates MMPs, S -nitrosothiols downregulate MMP-9 expression by suppressing the NF-kappaB pathway. While microbial proteinases cause excessive activation of MMPs and contribute to microbial pathogenesis, NO/RNS may modulate expression and activation of MMPs as well as various inflammatory mediators, depending on the redox status at sites of inflammation. Therefore, appropriate regulation of MMPs may be of potential therapeutic value for various infections and inflammatory lung diseases.  相似文献   

2.
The lung, with its enormous surface area, is literally 'bathed in a sea' of potential toxins that include pathogenic microorganisms, allergens, and pollutants. To preserve homeostasis and protect itself from injury, the lung has evolved intricate defense systems that guard it from these injurious agents. This chapter will focus on the innate component of the immune system that represents the first line of defense against microbial pathogens and pollutants. The innate immune system of the lung is diverse and includes structural cells such as epithelial cells and fibroblasts as well as itinerant leukocytes such as neutrophils, monocytes, and macrophages. Dendritic cells and mast cells, although of hematopoietic origin, are resident in the lung and help sense and orchestrate immune responses in the lung. Cells of the innate immune system secrete various soluble factors that are directly or indirectly microbicidal and/or modulate the inflammatory response. Among these soluble factors, proteinases and anti-proteinases factor prominently and exert both physiological and pathological effects on the function of diverse cell types in the lung. In concert with the adaptive immune system, the innate immune system of the lung is highly effective in combating invading microbial pathogens as evidenced by the rarity with which healthy humans succumb to lung infections.  相似文献   

3.
High glucose levels are associated with changes in macrophage polarisation and evidence indicates that the sustained or even short-term high glucose levels modulate inflammatory responses in macrophages. However, the mechanism by which macrophages can sense the changes in glucose levels are not clearly understood. We find that high glucose levels rapidly increase the α-E catenin protein level in RAW264.7 macrophages. We also find an attenuation of glucose-induced increase in α-E catenin when hexosamine biosynthesis (HB) pathway is inhibited either with glutamine depletion or with the drugs azaserine and tunicamycin. This indicates the involvement of HB pathway in this process. Then, we investigated the potential role of α-E catenin in glucose-induced macrophage polarisation. We find that the reduction in α-E catenin level using siRNA attenuates the glucose-induced changes of both IL-1β and IL-12 mRNA levels under LPS-stimulated condition but does not affect TNF-α expression. Together this indicates that α-E catenin can sense the changes in glucose levels in macrophages via HB pathway and also can modulate the glucose-induced gene expression of inflammatory markers such as IL-1β and IL-12. This identifies a new part of the mechanism by which macrophages are able to respond to changes in glucose levels.  相似文献   

4.
Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1-4) by exposing a 'tethered' receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.  相似文献   

5.
Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR(2)). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate G(q)-coupled PAR(2) calcium signaling; but all of these proteinases can disarm PAR(2), releasing the N-terminal TL sequence, thereby preventing G(q)-coupled PAR(2) signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR(2)-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of β-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR(2), downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR(2) signaling by preventing/disarming the G(q)/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR(2) signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.  相似文献   

6.
After bacterial infection, neutrophils dominate the cellular infiltrate. Their main function is assumed to be killing invading pathogens and resolving the inflammation they cause. Activated neutrophils are also known to release a variety of molecules, including the neutrophil serine proteinases, extracellularly. The release of these proteinases during inflammation creates a proteolytic environment where degradation of different molecules modulates the inflammatory response. Flagellin, the structural component of flagella on many bacterial species, is a virulence factor with a strong proinflammatory activity on epithelial cells and other cell types. In this study we show that both human and mouse neutrophil serine proteinases cleave flagellin from Pseudomonas aeruginosa and other bacterial species. More important, cleavage of P. aeruginosa flagellin by the neutrophil serine proteinases neutrophil elastase and cathepsin G resulted in loss of the biological activity of this virulence factor, as evidenced by the lack of innate host defense gene expression in human epithelial cells. The finding that flagellin is susceptible to cleavage by neutrophil serine proteinases suggests a novel role for these enzymes in the inflammatory response to infection. Not only can these enzymes kill bacteria, but they also degrade their virulence factors to halt the inflammatory response they trigger.  相似文献   

7.
LPS induces an up-regulation of promatrix metalloproteinase-9 (proMMP9) gene expression in cells of the monocyte/macrophage lineage. We demonstrate here that LPS preparations are also able to activate proMMP9 made by human macrophages or THP-1 cells via LPS-associated proteinases, which cleave the N-terminal propeptide at a site or sites close to the one cleaved upon activation with organomercurial compounds. LPS-associated proteinases are serine proteinases that are able to cleave denatured collagens (gelatin) and the mammalian serine proteinase inhibitor, alpha(1)-proteinase inhibitor, thereby pushing the balance of extracellular matrix turnover even further toward degradation. A low molecular mass, low affinity inhibitor of MMP9, possibly derived from the propeptide, is generated during proMMP9 activation. However, inhibition of the LPS-associated proteinases had no effect on proMMP9 synthesis, indicating that their proteolytic activity was not required for signaling the up-regulation of the proMMP9 gene.  相似文献   

8.
Blood coagulation plays a key role among numerous mediating systems that are activated in inflammation. Receptors of the PAR family serve as sensors of serine proteinases of the blood clotting system in the target cells involved in inflammation.Activation of PAR-1 by thrombin and of PAR-2 by factor Xa leads to a rapid expression and exposure on the membrane of endothelial cells of both adhesive proteins that mediate an acute inflammatory reaction and of the tissue factor that initiates the blood coagulation cascade. Certain other receptors (EPR-1, thrombomodulin, etc.), which can modulate responses of the cells activated by proteinases through PAR receptors, are also involved in the association of coagulation and inflammation together with the receptors of the PAR family. The presence of PAR receptors on mast cells is responsible for their reactivity to thrombin and factor Xa and defines their contribution to the association of inflammation and blood clotting processes.  相似文献   

9.
Acid-activatable cysteine proteinases of Dictyostelium discoideum were first identified in spore extracts of strain SG1 using gelatin/SDS/PAGE, followed by acid treatments. Here we utilized the technique of acid activation to identify cryptic cysteine proteinases throughout auto-induced and heat-induced spore germination of D. discoideum strain SG2 and SG1. The major acid-activatable cysteine proteinase identified in SG2 and SG1 spore extracts was ddCP38 (D. discoideum cysteine proteinase with a molecular mass of 38 kDa) and ddCP48, respectively. Further investigation of these enzymes revealed that they were also base deactivatable with a treatment of ammonium chloride directly following acid activation. However, the most intriguing observation was the reversibility of the effects of base deactivation on the enzymes following a second treatment with acetic acid. Thus, we hypothesize that, unlike most mammalian cysteine proteinases which generally require the cleavage of a pro-peptide region for activation, these cysteine proteinases of D. discoideum likely undergo reversible conformational changes between latent and active forms. Moreover, we were able to detect these cryptic cysteine proteinases in the vegetative cells and early aggregates of both strains SG1 and SG2. Studies using 4-[(2S, 3S)-3-carboxyoxiran-2-ylcarbonyl-L-leucylamido]buty lguanidine, a cysteine proteinase inhibitor, revealed that acid activation of a portion of these proteinases was still achievable even after incubation with the inhibitor, further supporting the concept of two stable and reversible conformational arrangements of the enzymes. Thus, we speculate that the pH shuffles that modulate proteinase conformation and activity in vitro may be a reflection of the in vivo regulation of these enzymes via H+-ATPases and ammonia.  相似文献   

10.
J Schrével  A Deguercy  R Mayer  M Monsigny 《Blood cells》1990,16(2-3):563-84; discussion 585-90
The discrimination between erythrocyte and Plasmodium proteases is now made easier by using synthetic fluorogenic substrates, high-pressure liquid chromatography, reliable methods of cell preparation, as well as radiolabeled extracts from in vitro cultures of P. falciparum. The reinvasion process of an erythrocyte by a merozoite involves specific proteinases, which were recently identified using fluorogenic peptidyl-AEC substrates and by analysis of schizont and merozoite extracts with the gelatin-SDS-PAGE method. The biological targets of both host and parasite proteinases are not yet well characterized because Plasmodium-infected red blood cells contain at least four compartments with different pH values, which could modulate the proteinase activities according to their pH range activity. The processing of the precursor for the major merozoite surface antigens involves cleavage of very specific peptidic bonds by, so far unknown, proteinases. The depletion of the erythrocyte cytoskeleton could depend on a 37 kD proteinase, which cleaves spectrin and the 4.1 component, as shown in P. berghei and P. falciparum species. In contrast to leupeptin, which inhibits the merozoite release from schizont-infected erythrocytes, the structural inhibitor analogous to the Val-Leu-Gly-Lys (or Arg) P. falciparum neutral proteinase substrates appears to block the invasion step of erythrocytes by merozoites and may open new trends in chemotherapeutical strategies.  相似文献   

11.
Park SJ  Park HJ  Kim SJ  Shin HJ  Min IS  Koh KO  Kim DY  Youn HS 《BMB reports》2011,44(7):468-472
Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1- yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acid-induced interferon regulatory factor 3 activation, as well as interferon- inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.  相似文献   

12.
13.
Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent downstream signaling pathways. Isoliquiritigen in (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-κB kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-κB and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.  相似文献   

14.
Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type protease inhibitor that primarily inhibits the extrinsic pathway of blood coagulation. It is synthesized by various cells and its expression level increases in inflammatory environments. Mast cells and neutrophils accumulate at sites of inflammation and vascular disease where they release proteinases as well as chemical mediators of these conditions. In this study, the interactions between TFPI and serine proteinases secreted from human mast cells and neutrophils were examined. TFPI inactivated human lung tryptase, and its inhibitory activity was stronger than that of antithrombin. In contrast, mast cell chymase rapidly cleaved TFPI even at an enzyme to substrate molar ratio of 1:500, resulting in markedly decreased TFPI anticoagulant and anti-(factor Xa) activities. N-terminal amino-acid sequencing and MS analyses of the proteolytic fragments revealed that chymase preferentially cleaved TFPI at Tyr159-Gly160, Phe181-Glu182, Leu89-Gln90, and Tyr268-Glu269, in that order, resulting in the separation of the three individual Kunitz domains. Neutrophil-derived proteinase 3 also cleaved TFPI, but the reaction was much slower than the chymase reaction. In contrast, alpha-chymotrypsin, which shows similar substrate specificities to those of chymase, resulted in a markedly lower level of TFPI degradation. These data indicate that TFPI is a novel and highly susceptible substrate of chymase. We propose that chymase-mediated proteolysis of TFPI may induce a thrombosis-prone state at inflammatory sites.  相似文献   

15.
16.
17.
Neovascularization is an integral process of inflammatory reactions and subsequent repair cascades in tissue injury. Monocytes/macrophages play a key role in the inflammatory process including angiogenesis as well as the defence mechanisms by exerting microbicidal and immunomodulatory activity. Current studies have demonstrated that recruited monocytes/macrophages aid in regulating angiogenesis in ischemic tissue, tumours and chronic inflammation. In terms of neovascularization followed by tissue regeneration, monocytes/macrophages should be highly attractive for cell-based therapy compared to any other stem cells due to their considerable advantages: non-oncogenic, non-teratogenic, multiple secretary functions including pro-angiogenic and growth factors, straightforward cell harvesting procedure and non-existent ethical controversy. In addition to adult origins such as bone marrow or peripheral blood, umbilical cord blood (UCB) can be a potential source for autologous or allogeneic monocytes/macrophages. Especially, UCB monocytes should be considered as the first candidate owing to their feasibility, low immune rejection and multiple characteristic advantages such as their anti-inflammatory properties by virtue of their unique immune and inflammatory immaturity, and their pro-angiogenic ability. In this review, we present general characteristics and potential of monocytes/macrophages for cell-based therapy, especially focusing on neovascularization and UCB-derived monocytes.  相似文献   

18.
The retinoblastoma (RB) tumor suppressor protein is a negative regulator of cell proliferation that is functionally inactivated in the majority of human tumors. Elevated Cdk activity via RB pathway mutations is observed in virtually every human cancer. Thus, Cdk inhibitors have tremendous promise as anticancer agents although detailed mechanistic knowledge of their effects on RB function is needed to harness their full potential. Here, we illustrate a novel function for Cdks in regulating the subcellular localization of RB. We present evidence of significant cytoplasmic mislocalization of ordinarily nuclear RB in cells harboring Cdk4 mutations. Our findings uncover a novel mechanism to circumvent RB-mediated growth suppression by altered nucleocytoplasmic trafficking via the Exportin1 pathway. Cytoplasmically mislocalized RB could be efficiently confined to the nucleus by inhibiting the Exportin1 pathway, reducing Cdk activity, or mutating the Cdk-dependent phosphorylation sites in RB that result in loss of RB-Exportin1 association. Thus RB-mediated tumor suppression can be subverted by phosphorylation-dependent enhancement of nuclear export. These results support the notion that tumor cells can modulate the protein transport machinery thereby making the protein transport process a viable therapeutic target.  相似文献   

19.
Cathepsin G, elastase, and proteinase 3 are serine proteinases released by activated neutrophils. Cathepsin G can cleave angiotensinogen to release angiotensin II, but this activity has not been previously reported for elastase or proteinase 3. In this study we show that elastase and proteinase 3 can release angiotensin I from angiotensinogen and release angiotensin II from angiotensin I and angiotensinogen. The relative order of potency in releasing angiotensin II by the three proteinases at equivalent concentrations is cathepsin G > elastase > proteinase 3. When all three proteinases are used together, the release of angiotensin II is greater than the sum of the release when each proteinase is used individually. Cathepsin G and elastase can also degrade angiotensin II, reactions which might be important in regulating the activity of angiotensin II. The release and degradation of angiotensin II by the neutrophil proteinases are reactions which could play a role in the local inflammatory response and wound healing.  相似文献   

20.
Autophagy is a catabolic process conserved among all eukaryotes essential for the cellular and organismal homeostasis. One of the principal roles of this pathway is to maintain an accurate balance between synthesis, degradation and subsequent recycling of cellular components. Under certain conditions, however, cells are also able to modulate autophagy and specifically remove a number of structures that are potentially harmful. Aberrant protein aggregates, damaged organelles or pathogens can be selectively incorporated into large double-membrane vesicles called autophagosomes to be delivered into lysosomes for destruction. This ability to eliminate specific structures is exploited by the cells in several physiological processes as well as in multiple pathological situations, making autophagy a precious multitask cellular degradative pathway. In this review, we will first examine what is known about the basic mechanisms of autophagy and then discuss in a second part the nature of the cargoes that are selectively sequestered into autophagosomes, what provides the specificity and the possible implications of selective types of autophagy in human pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号