首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
该文探讨低雌激素培养环境下,机械牵张对小鼠C2C12成肌细胞内源性雌二醇(estradiol,E2)生成的影响及潜在的抗氧化作用。研究以小鼠C2C12成肌细胞为对象,分为对照组、牵张组(15%,0.5 Hz,6 h)、H2O2组(400μmol/L,4 h)、牵张+H2O2组和芳香化酶抑制剂(200μg/m L,24 h)+牵张+H2O2组。所有组别均使用活性炭吸附后的FBS和无酚红的DMEM高糖培养基建立低雌激素培养环境;CCK8法检测细胞活力;Elisa法检测胞内E2水平;WST-1法测定SOD活性;钼酸铵法测定CAT活性;比色法测定GSH-Px活性;TBA法测定MDA生成情况;Western blot检测细胞内Akt/Nrf2/HO-1蛋白表达情况。结果显示,牵张组较对照组芳香化酶活性及蛋白表达水平上升,细胞内E  相似文献   

2.
【目的】为明确食蚜瘿蚊Aphidoletes aphidimyza对莴苣指管蚜Uroleucon formosanum的控害潜能。【方法】本研究在室内条件下测定食蚜瘿蚊对莴苣指管蚜的捕食功能反应,并利用室外笼罩法模拟食蚜瘿蚊对莴苣指管蚜的田间控害潜能。【结果】食蚜瘿蚊3龄幼虫对1-5龄莴苣指管蚜的捕食功能反应符合HollingⅡ模型,对1-2龄莴苣指管蚜的瞬时攻击率(a)和捕食能力(a/Th)均最高,分别为0.466和12.90;搜寻效应随莴苣指管蚜密度的增大而下降;食蚜瘿蚊3龄幼虫对1-5龄莴苣指管蚜的日均捕食量随自身密度的增加而增大,但捕食作用率随其密度的增加而逐渐降低,其种内干扰方程分别为:E1–2=0.304P﹣1.148、E3=0.226P﹣1.155、E4=0.177P﹣1.094、E5=0.128P﹣1.028;在捕食偏好选择中,食蚜瘿蚊3龄幼虫对莴苣指管蚜1-2龄及3龄若蚜的...  相似文献   

3.
石油焦基高比表面积活性炭对废水中CODCr的吸附能力   总被引:2,自引:0,他引:2  
孙敏  彭凤仙  邓益群 《生态科学》2005,24(2):146-149
探讨了高比表面积活性炭(HSAAC)吸附水中CODCr时,活性炭用量、pH值和吸附时间等因素对CODCr吸附量和去除率的影响。实验结果表明,HSAAC用量越大,去除CODCr效果越好。当HSAAC用量为2.0g·L-1,pH=3时,去除率达到78%以上;在酸性条件下HSAAC对CODCr的去除效果较好;HSAAC对废水中CODCr的吸附发生在前30min;CODCr浓度低于60mg·L-1时,处理后CODCr的残余质量浓度低于地表水环境质量Ⅰ类标准(15mg·L-1)。用碱再生HSAAC,一次再生率达94.22%,二次再生率达到了86.90%。说明高比表面积活性炭在适宜条件下对CODCr具有较好的吸附性能和良好的再生效果。  相似文献   

4.
贾凯  刘俊  耿晓桐  张耀洲  肖颖 《广西植物》2023,43(1):183-189
为确定细叶十大功劳(Mahonia fortunei)叶中总生物碱大孔树脂分离纯化的最佳工艺条件及抗氧化活性,该研究通过比较6种大孔吸附树脂对总生物碱的静态吸附和解吸附效果,优选出最佳树脂并考察其动态纯化总生物碱的工艺条件,并采用DPPH法对纯化前后的总生物碱抗氧化性能进行评价。结果表明:(1)AB-8型大孔吸附树脂纯化效果最好,其最佳工艺条件为上样浓度50 mg·mL-1(生药浓度)、上样量26 BV、上样液流速2 BV·h-1;吸附完成后,以3 BV水洗后再以4 BV 50%乙醇洗脱,在此条件下得到的总生物碱含量由13.33%提高到56.64%。(2)各样品对DPPH自由基的清除能力为对照品Vc(IC50=10.39μg·mL-1)>总生物碱纯化品(IC50=39.08μg·mL-1)>总生物碱粗品(IC50=55.28μg·mL-1)。综上表明,AB-8型大孔吸附树脂可有效富集细叶十大功劳叶中总...  相似文献   

5.
叶佩青  檀笑  詹志薇 《生态科学》2011,30(5):541-546
利用解脂假丝酵母对Cr(Ⅵ)、Ni(Ⅱ)和Cu(Ⅱ)共存的模拟重金属废水及3种实际重金属废水进行了微生物吸附,结果表明,pH、吸附时间和菌浓度等均是显著的影响因素.Cr(Ⅵ)、Ni(Ⅱ)和Cu(Ⅱ)的去除均符合准一级和准二级动力学模型,其中准二级模型的拟合效果最理想,证明该菌种对重金属的吸附包括了多个步骤,其中化学吸附是限速步骤.解脂假丝酵母对共存重金属的生物吸附效果理想,1g·L-1菌体在120min时,对18.7~37.86mg·L-1Cr、2.39~9.21mg·L-1Cu、2.27~9.87mg·L-1Ni和0.43~1.32mg·L-1Zn的去除率分别为81.6%~84.6%、84.0%~100%、84.1%~100%和93.9%~100%.菌体的蛋白质、脂质和多糖均参与了重金属吸附,起作用的主要功能团是-OH、-NH2、-CH2、-CH3、-COOH、-CHO、C=C、-PO43-和-SO3H.  相似文献   

6.
以核桃壳和杏仁壳为原料, 经高温热解成生物炭再利用酸、碱修饰对其进行改性制备成吸附剂材料, 同时以矿物吸附剂(蛭石)和竹炭作为对比材料, 比较了四种改性吸附剂对镉(Cd), 以及对硬水中钙(Ca2+)、镁(Mg2+)的吸附性能, 考察了吸附剂投加量对 Cd 去除和硬水软化处理效果的影响, 初步探讨了吸附机制。结果表明: 果壳生物炭经酸碱改性后吸附能力显著提升。竹炭和杏仁壳炭对 Cd 的吸附效果相当(去除率分别为 99.2%, 99.1%), 核桃壳炭次之(93.8%),蛭石对 Cd 的去除受 Cd 浓度影响较大, 而杏仁壳可以净化不同程度 Cd 污染废水。核桃壳和杏仁壳炭对 Ca2+和 Mg2+的吸附能力强, 二者在最小投加量(1 g)时即可将水的硬度降至饮用水标准值(450 mg·L-1, 以 CaCO3计)以下, 对 Ca2+、Mg2+的去除率最高可达 83.6%, 而竹炭和蛭石对硬...  相似文献   

7.
尿素与磷酸二氢钾配施对板栗光合特性及生长结实的影响   总被引:1,自引:0,他引:1  
肥料配施可提高肥料利用效率,改善树体营养结构,起到平衡施肥的作用.选取7年生板栗树为试材,采用树干注射的方法,研究尿素和磷酸二氢钾不同配施处理对板栗光合特性及生长结实的影响.结果表明: 尿素和磷酸二氢钾配施具有明显的正向协同效应,二者配施较单一施肥可显著提高板栗光合能力及产量和品质.单施(NH2)2CO可降低叶绿素含量,单施KH2PO4可增加叶绿素含量,而二者配施使叶绿素含量显著增加.4种配施处理均可提高叶片及枝条的N、P、K含量,其中0.3%(NH2)2CO+0.3%KH2PO4处理效果最好.不同施肥处理均可改善光合参数,但仍以配施处理为好,其中0.3%(NH2)2CO+0.3%KH2PO4处理可显著提高光合速率、最大净光合、表观量子效率、羧化效率、瞬时水分利用效率、氮素利用效率.配施可同时促进枝条加长和加粗生长,并提高混合芽数量,而单施(NH2)2CO仅能促进加长生长,对提高混合芽数量效果不显著.配施对提高坚果产量和质量效果优于单一施肥,在0.3%(NH2)2CO+0.3%KH2PO4处理下坚果产量、单粒质量和总糖含量等关键指标较对照分别提高68.2%、25.5%和14.9%.  相似文献   

8.
目的:探讨子宫动脉血流参数[搏动指数(PI)、阻力指数(RI)、收缩期/舒张期血流速度(S/D)]联合血清β-人绒毛膜促性腺激素(β-HCG)、孕酮(P)、雌二醇(E2)预测复发性流产(RSA)再次妊娠孕妇流产的价值。方法:选取2021年1月~2022年10月安徽省妇幼保健院收治的RSA再次妊娠孕妇145名(RSA组),另选取同期我院145名健康孕妇(对照组),根据妊娠结局将RSA再次妊娠孕妇分为流产组(65例)和活产组(80例)。检测血清β-HCG、P、E2水平,并采用经阴道超声检测子宫动脉血流参数。多因素Logistic回归分析影响RSA再次妊娠孕妇流产的因素,受试者工作特征(ROC)曲线分析子宫动脉血流参数联合血清β-HCG、P、E2预测RSA再次妊娠孕妇流产的价值。结果:RSA组PI、RI、S/D高于对照组,血清β-HCG、P、E2水平低于对照组(P<0.05)。流产组PI、RI、S/D高于活产组,血清β-HCG、P、E2水平低于活产组(P<0.05)。多因...  相似文献   

9.
花生幼苗光合特性对弱光的响应   总被引:8,自引:0,他引:8  
在苗期用黑色遮阳网对丰花1号和丰花2号进行不同遮光处理(不遮光,遮光27%、43%和77%),研究了苗期遮光及恢复对花生叶片光合特性的影响.结果表明: 遮光后,随遮光程度增强,叶片叶绿素含量显著增加,实际光化学效率(ФPSⅡ)和最大光化学效率(Fv/Fm)升高,叶绿素a/b和净光合速率(Pn)降低.恢复自然光照后1 d,在高光强下测定时,随前期遮光程度增强,Pn、气孔导度(Gs)下降,细胞间隙CO2浓度(Ci)升高;在低光强下测定时,Pn显著升高,Gs和Ci下降;低光强与高光强下测定的Pn比值显著升高;恢复自然光照后,随前期遮光程度增强,光补偿点、光饱和点、CO2补偿点、CO2饱和点和羧化效率显著降低,表观量子效率显著升高.恢复自然光照后,Pn、ФPSⅡ和Fv/Fm先迅速下降,3~5 d后逐渐回升;恢复15 d后,遮光27%处理的各项指标恢复到对照水平,其他处理的恢复程度则因遮光程度和品种而异.丰花1号各处理叶绿素含量、Pn、ФPSⅡ均高于丰花2号.苗期遮光提高了花生利用弱光的能力,降低了其利用强光的能力.  相似文献   

10.
为揭示不同灌水量对温室番茄土壤CO2、N2O和CH4排放及作物产量的影响,提出有效的减排措施,试验设置充分灌溉(1.0W,W1.0;W为充分供水的灌水量)、亏缺20%灌溉(0.8W,W0.8)和亏缺40%灌溉(0.6W,W0.6)3个灌水水平,采用静态暗箱/气相色谱法于2017年4—12月对两茬温室番茄土壤CO2、N2O和CH4进行全生长季监测,分析土壤CO2、N2O和CH4排放对不同灌水量的响应.结果表明: 番茄两个生长季中,土壤CO2、N2O和CH4排放量均随着灌水量增加呈现逐渐增加的趋势(W1.0>W0.8>W0.6),除W0.6和W1.0处理间土壤N2O排放具有显著差异外,其他各处理间气体排放差异均不显著.与W1.0处理相比,W0.6和W0.8处理土壤CO2排放分别减小了12.2%和8.3%,N2O分别减小了19.1%和8.0%,CH4分别减小了11.0%和6.2%.番茄产量和由土壤N2O和CH4引起的全球增温潜势(GWP)均随灌水量增加而增加;与W1.0处理相比,W0.6处理产量和GWP显著减小,降幅分别为17.0%和22.9%,而W0.8处理对两者未产生显著影响.单位产量GWP随灌水量增加表现为先增加后降低的趋势(W0.8>W1.0>W0.6),处理间差异不显著.灌溉水利用效率(IWUE)随灌水量增加而降低,与W1.0处理相比,W0.6和W0.8处理IWUE分别增加了38.3%和9.4%.回归分析表明,土壤CO2排放通量与土壤水分呈指数负相关关系;土壤CH4通量与土壤水分呈线性正相关关系;当土壤温度小于18 ℃和大于18 ℃时,土壤N2O排放通量与土壤温度间均呈指数负相关关系.灌水增加了番茄产量和温室气体排放,但降低了IWUE.综合考虑番茄产量、IWUE和温室效应,推荐W0.8处理为较佳的灌溉模式.  相似文献   

11.

The occurrence of endocrine disrupting chemicals (EDCs) is a major issue for marine and coastal environments in the proximity of urban areas. The occurrence of EDCs in the Pearl River Delta region is well documented but specific data related to Macao is unavailable. The levels of bisphenol-A (BPA), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) were measured in sediment samples collected along the coastline of Macao. BPA was found in all 45 collected samples with lower BPA concentrations associated to the presence of mangrove trees. Biodegradation assays were performed to evaluate the capacity of the microbial communities of the surveyed ecosystems to degrade BPA and its analogue BPS. Using sediments collected at a WWTP discharge point as inoculum, at a concentration of 2 mg l?1 complete removal of BPA was observed within 6 days, whereas for the same concentration BPS removal was of 95% after 10 days, which is particularly interesting since this compound is considered recalcitrant to biodegradation and likely to accumulate in the environment. Supplementation with BPA improved the degradation of bisphenol-S (BPS). Aiming at the isolation of EDCs-degrading bacteria, enrichments were established with sediments supplied with BPA, BPS, E2 and EE2, which led to the isolation of a bacterial strain, identified as Rhodoccoccus sp. ED55, able to degrade the four compounds at different extents. The isolated strain represents a valuable candidate for bioremediation of contaminated soils and waters.

  相似文献   

12.
The upflow aerated biofilter with polyurethane foam cubes as the supporting medium was used for the investigation of nitrification studies on municipal sewage (secondary treated as well as untreated domestic sewage). In case of secondary treated sewage effluent, a synthetic composition of NH4 +-N and COD of each 50?mg/l was studied for a HRT variation of 24, 12, 8 and 6 hours. The ammonium removal efficiencies were found to be in the range of 98 to 100% with the steady-state effluent concentrations of NH4 +-N and NO2 ?-N in the range of 1–4 mg/l and 0.1–0.2?mg/l respectively. In case of domestic sewage system, nitrification studies along with suspended solids removal study was carried-out on untreated sewage for a HRT variation of 24, 12 and 6 hours. The ammonium removal efficiencies of 100% were observed for all the three HRT values at very high COD/NH4 +-N ratio of 15. The suspended solids removal efficiencies of 95 to 98% were observed with the average effluent suspended solids concentration of 5.9 to 15.9?mg/l. The experiments were conducted in non-backwash conditions of the biofilter. The study has revealed the best use of the upflow biofilter system for nitrification applications and suspended solids removal.  相似文献   

13.
The biodegradability of several potential endocrine disrupting compounds, namely 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), bisphenol A (BPA), triclosan (TCS), di-(2-ethylhexyl)-phthalate (DEHP), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) was evaluated in this study, using OECD method 301F (manometric respirometry test) and activated sludge as inoculum. According to the results, 4-n-NP and BPA meet the strict definition of ready biodegradability and they are not expected to be persistent during the activated sludge process. Partial biodegradation was observed for DEHP (58.7+/-5.7%, n=3), TCS (52.1+/-8.5%, n=3) and NP1EO (25.9+/-8.1%, n=3), indicating their possible biodegradation in wastewater treatment systems, while no biodegradation was observed for NP2EO, PFOA and PFNA. Experiments in the co-presence of a readily biodegradable compound showed the absence of co-metabolic phenomena during 4-n-NP, BPA and TCS biodegradation. Using first order kinetics to describe biodegradation of the target compounds, half-lives of 4.3+/-0.6, 1.3+/-0.2, 1.8+/-0.5, 6.9+/-2.6 days were calculated for 4-n-NP, BPA, TCS and DEHP, respectively. Toxicity tests using marine bacterium Vibrio fischeri showed that biodegradation of 4-n-NP, NP1EO, BPA and TCS is a simultaneous detoxification process, while possible abiotic or biotic transformations of NP2EO, DEHP, PFOA and PFNA during respirometric test resulted to significant increase of their toxicities.  相似文献   

14.
A sensitive and simple method based on solid-phase extraction (SPE) and HPLC with fluorescence detection for the determination of bisphenol A (BPA) and 4-nonylphenol (4-NP) in rat serum, liver and testis tissues has been developed. The chromatographic conditions consisted of a C18 column and mobile phase composition of acetonitrile and water with flow rate of 1.0 ml/min. The fluorescence detection was performed at excitation and emission wavelengths of 227 nm and 313 nm, respectively. Under these conditions, BPA and 4-NP were well separated and showed good linearities in the ranges of 0.01-50.0 microg/ml for BPA and 0.15-150.0 microg/ml for 4-NP with correlation coefficients greater than 0.999. The detection limits of serum and tissue samples were 2.8 ng/ml and 1.4 ng/g for BPA and 5.6 ng/ml and 2.8 ng/g for 4-NP at a signal-to-noise ratio (S/N) of 3. The intra-assay and the inter-assay precisions were better than 11.4%. Recoveries of BPA and 4-NP were 78.6-95.0% and 80.2-93.4%, respectively. The proposed method was applied to a toxicokinetic study of BPA and 4-NP including individual and combined oral administration to rats. The results showed that 4-NP remarkably altered the toxicokinetic parameters of BPA in testis, while parameters of BPA were not obviously altered in serum and liver under the experimental conditions investigated. On the other hand, there was no significant difference in the toxicokinetics of 4-NP when administered with BPA.  相似文献   

15.
The removal of endocrine-disrupting compounds (EDCs) by lignin peroxidase from white-rot fungus Phanerochaete sordida YK-624 (YK-LiP1) was investigated. Five endocrine disruptors, pt-octylphenol (OP), bisphenol A (BPA), estrone (E1), 17β-estradiol (E2), and ethinylestradiol (EE2) were eliminated by YK-LiP1 more effectively than lignin peroxidase from P. chrysosporium (Pc-LiP), and OP and BPA were disappeared almost completely in the reaction mixture containing YK-LiP1 after a 24-h treatment. Particularly, the removal of estrogenic activities of E2 and EE2, which show much higher estrogenic activities than other EDCs such as BPA and OP, were removed following 24-h treatment with YK-LiP1. Moreover, 5,5′-bis(1,1,3,3-tetramethylbutyl)-[1,1′-biphenyl]-2,2′-diol and 5,5′-bis-[1-(4-hydroxy-phenyl)-1-methyl-ethyl]-biphenyl-2,2′-diol were identified as the main metabolite from OP or BPA, respectively. These results suggest that YK-LiP1 is highly effective in removing of EDCs by the oxidative polymerization of these compounds.  相似文献   

16.
A novel analytical method employing MCX (mixed-mode cationic exchange) based solid phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to detect 31 endocrine-disrupting compounds (EDCs) in surface water samples simultaneously. The target EDCs belong to five classes, including seven estrogens, eight androgens, six progesterones, five adrenocortical hormones and five industrial compounds. In order to simultaneously concentrate the target EDCs and eliminate matrix interferences in the water samples, MCX SPE cartridges were employed for SPE, and then followed by a simple and highly efficient three-step sequential elution procedure. Two electrospray ionization (ESI) detection modes, positive (ESI+) and (ESI-), were optimized for HPLC-MS/MS analysis to obtain the highest sensitivity for all the EDCs. The limits of detection (LODs) were 0.02-1.9 ng L(-1), which are lower than or comparable to these reported in references. Wide linear ranges (LOD-100 ng L(-1) for ESI+ mode, and LOD-200 ng L(-1) for ESI- mode) were obtained with determination coefficients (R(2)) higher than 0.99 for all the compounds. With five internal standards, good recoveries (84.4-103.0%) of all the target compounds were obtained in selected surface water samples. The developed method was successfully applied to investigate the EDCs occurrence in the surface water of Shanghai by analyzing surface water samples from 11 sites. The results showed that nearly all the target compounds (30 in 31) were present in the surface water samples of Shanghai, of which three industrial compounds (4-t-OP, BPA, and BPF) showed the highest concentrations (median concentrations were 11.88-23.50 ng L(-1)), suggesting that industrial compounds were the dominating EDCs in the surface water of Shanghai, and much more attention should be paid on these compounds. Our present research demonstrated that SPE with MCX cartridges combined with HPLC-MS/MS was convenient, efficient and reliable for multiclass analysis of EDCs in surface water.  相似文献   

17.
A perfusion basket reactor (BR) was developed for the continuous utilization of insolubilized laccase as cross‐linked enzyme aggregates (CLEAs). The BR consisted of an unbaffled basket made of a metallic filtration module filled with CLEAs and continuously agitated by a 3‐blade marine propeller. The agitation conditions influenced both the apparent laccase activity in the reactor and the stability of the biocatalyst. Optimal laccase activity was obtained at a rotational speed of 12.5 rps and the highest stability was reached at speeds of 1.7 rps or lower. The activity and stability of the biocatalyst were affected drastically upon the appearance of vortices in the reaction medium. This reactor was used for the continuous elimination of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA), and triclosan (TCS). Optimization of EDC elimination by laccase CLEAs as a function of temperature and pH was achieved by response surface methodology using a central composite factorial design. The optimal conditions of pH and temperature were, respectively, 4.8 and 40.3°C for the elimination of p353NP (a branched isomer of NP), 4.7 and 48.0°C for BPA, and 4.9 and 41.2°C for TCS. Finally, the BR was used for the continuous elimination of these EDCs from a 5 mg L?1 aqueous solution using 1 mg of CLEAs at pH 5 and room temperature. Our results showed that at least 85% of these EDCs could be eliminated with a hydraulic retention time of 325 min. The performances of the BR were quite stable over a 7‐day period of continuous treatment. Furthermore, this system could eliminate the same EDCs from a 100 mg L?1 solution. Finally, a mathematical model combining the Michaelis–Menten kinetics of the laccase CLEAs and the continuous stirred tank reactor behavior of the BR was developed to predict the elimination of these xenobiotics. Biotechnol. Bioeng. 2009;102: 1582–1592. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
Laccase from the white rot fungus strain Coriolopsis polyzona was immobilized covalently on the diatomaceous earth support Celite® R-633 using different strategies. A first methodology involved the sequential activation of the support surface with γ-aminopropyltriethoxysilane followed by the reaction of the functionalized surface with glutaraldehyde (GLU) or glyoxal (GLY) and the immobilization of laccase on the activated surface. Another strategy tested the simultaneous internal cross-linking of the protein with GLU or GLY and the immobilization of the laccase on the silanized surface. Finally, these two strategies were modified to test the impact of the concomitant addition of bovine serum albumin (BSA) as a stabilizing agent during the immobilization steps. The highest laccase activity and the greatest degree of activity recovery (tested using 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as the substrate) were achieved by the sequential immobilization procedure using GLU as the cross-linking agent. The solid catalysts featuring internal cross-linking of the protein showed significantly higher stability against several denaturants. The Michaelis–Menten kinetic parameters with respect to ABTS revealed a higher affinity for this substrate in the case of the sequential procedure compared to the simultaneous approach. The biocatalyst formed using GLU in the sequential procedure was applied in a packed bed reactor for the continuous treatment of 5 mg l−1 solutions of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA) and triclosan (TCS) through repeated batch treatments. All of these EDCs could be eliminated at a contact time of less than 200 min by using, respectively, 3.75 units (U) of laccase activity for BPA and TCS and 1.88 U for NP. These performances of elimination were maintained over five consecutive treatment cycles using the same biocatalyst. This system could also remove these EDCs from 100 mg l−1 solutions. The Michaelis–Menten kinetic parameters with respect to these chemicals showed a decreasing affinity of the solid biocatalyst for NP, TCS and BPA in that order.  相似文献   

19.
Adsorption and aerobic biodegradation characteristics of four selected endocrine disrupting chemicals (EDCs), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), bisphenol A (BPA) and nonylphenol (NP) were investigated in soil–water system. The sorption of EDCs onto the soil was in the following order: NP > E2 > EE2 > BPA. Sorption isotherms of the four compounds fitted Freundlich models well. The aerobic biodegradation rates of these selected EDCs in the soil–water system could be described by pseudo-first-order kinetic equation. In a single chemical system, the half-lives of EDCs were 1.7, 5.3, 2.7 and 3.3 d for E2, EE2, NP and BPA, respectively, indicating that EE2 was not as readily biodegradable as the others. In a binary-chemical system, the half-lives of EDCs in all cominations were 1.5–2.2 times prolonged than the single chemical system. The following biotransformation pathway of estrogen was proposed: E2/EE2  E1  E3. An aerobic conversion of EE2 to E3 was also observed. The result of this research could be useful for predicting environmental fate and ecological risks of EDCs in natural environments especially when soil is their depository.  相似文献   

20.
This research was to study the effect of blast furnace dust (BFD) as a new reactive material for the degradation of chlorinated organic (COCs) and endocrine disrupting compounds (EDCs). When 100 g/L of BFD was used, the effective degradation of tetrachloroethylene (PCE) was obtained. The cis-DCE (0.93 mM) was dechlorinated to below detection limit within 120 h of reaction. Among various COCs and EDCs, they were degraded at least 90% except for sodium perchlorate. The metabolites of 4-tert-octylphenol (4-t-OP) were identified as 2,4,4-trimethyl-2-pentanol, hydroquinone and 2-tert-octylhydroquinone, respectively. The effective degradation of PCE and 4-t-OP was occurred at range of pH 4–7. A total of 100% of cis-DCE and 86% of 4-t-OP were degraded in fed-batch experiments after 264 h. A solution of highly enriched bacteria completely insolubilized 2.14 mM of Zn eluted from BFD within 168 h of culture. These researches will provide more information related to the application for other contaminated water and wastewater treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号