首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hyperperformer for the production of verbenol was produced from the fusion of two improved strains of Aspergillus niger. A 2-deoxy glucose de-repressed mutant [high sporulation (50%), viability (80%) showing a conversion of 15.6% of initial alpha-pinene to verbenol in 6 h under the conditions used] was fused with another strain enriched with alpha-pinene (26.4% of alpha pinene converted to verbenol) to obtain a final verbenol conversion yield of 48.6% of initial alpha pinene.  相似文献   

2.
Abstract 1 The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic pest of pine, Pinus spp., and was first discovered in North America in 1992. 2 Although primary attraction to host volatiles has been clearly demonstrated for T. piniperda, the existence and role of secondary attraction to insect‐produced pheromones have been widely debated. 3 Currently, commercial lures for T. piniperda include only the host volatiles α‐pinene in North America and α‐pinene, terpinolene and (+)‐3‐carene in Europe. Several potential pheromone candidates have been identified for T. piniperda. 4 We tested various combinations of host volatiles and pheromone candidates in Michigan, U.S.A., and Ontario, Canada, to determine an optimal blend. 5 Attraction of T. piniperda was significantly increased when trans‐verbenol (95% pure, 3.2%cis‐verbenol content) was added with or without myrtenol to α‐pinene or to blends of α‐pinene and other kairomones and pheromone candidates. 6 Our results, together with other research demonstrating that trans‐verbenol is produced by T. piniperda, support the designation of trans‐verbenol as a pheromone for T. piniperda. A simple operational lure consisting of α‐pinene and trans‐verbenol is recommended for optimal attraction of T. piniperda.  相似文献   

3.
Hydroxylations of octane and lauric acid by Cytochrome P450-BM3 (CYP102A1) wild-type and three active site mutants--F87A, L188Q/A74G, and F87V/L188Q/A74G--were rationalized using a combination of substrate orientation from docking, substrate binding statistics from molecular dynamics simulations, and barrier energies for hydrogen atom abstraction from quantum mechanical calculations. Wild-type BM3 typically hydroxylates medium- to long-chain fatty acids on subterminal (omega-1, omega-2, omega-3) but not the terminal (omega) positions. The known carboxylic anchoring site Y51/R47 for lauric acid, and hydrophobic interactions and steric exclusion, mainly by F87, for octane as well as lauric acid, play a role in the binding modes of the substrates. Electrostatic interactions between the protein and the substrate strongly modulate the substrate's regiodependent activation barriers. A combination of the binding statistics and the activation barriers of hydrogen-atom abstraction in the substrates is proposed to determine the product formation. Trends observed in experimental product formation for octane and lauric acid by wild-type BM3 and the three active site mutants were qualitatively explained. It is concluded that the combination of substrate binding statistics and hydrogen-atom abstraction barrier energies is a valuable tool to rationalize substrate binding and product formation and constitutes an important step toward prediction of product ratios.  相似文献   

4.
To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10-2H3,1-3H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed.  相似文献   

5.
(+)-Pinene cyclase from sage (Salvia officinalis) catalyzes the isomerization and cyclization of geranyl pyrophosphate to (+)-alpha-pinene and (+)-camphene, and to lesser amounts of (+)-limonene, myrcene, and terpinolene, whereas (-)-pinene cyclase from this tissue catalyzes the conversion of the acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene, and (-)-camphene, and to lesser quantities of (-)-limonene, myrcene, and terpinolene. The bicyclic products of these enzymes (pinene and camphene) are derived via the cyclization of the cisoid, anti-endo-conformers of the bound, tertiary allylic intermediates (3R)-linalyl pyrophosphate [+)-pinene cyclase) and (3S)-linalyl pyrophosphate [-)-pinene cyclase). When challenged with either enantiomer of linalyl pyrophosphate or with neryl pyrophosphate (cis-isomer of geranyl pyrophosphate) as substrate, both pinene cyclases synthesize disproportionately high levels of acyclic olefins (myrcene and ocimene) and monocyclic olefins (limonene and terpinolene), compared with the product mixtures generated from the natural geranyl precursor. Resolution of the limonene derived from linalyl pyrophosphate and neryl pyrophosphate demonstrated that this monocyclic olefin was formed via conformational foldings in addition to the cisoid,anti-endo-pattern. These results indicate that the alternate substrates are ionized by the cyclases prior to their achieving the optimum orientation for bicyclization. In the case of geranyl pyrophosphate, a preassociation mechanism is suggested in which optimum folding of the terpenyl chain precedes the initial ionization step.  相似文献   

6.
A soluble enzyme preparation from immature sage (Salvia officinalis) leaves has been shown to catalyze the cation-dependent cyclization of geranyl pyrophosphate to the isomeric monoterpene olefins (+/-)-alpha-pinene and (-)-beta-pinene and to lesser amounts of camphene and limonene (Gambliel, H., and Croteau, R. (1982) J. Biol. Chem. 257, 2335-2342). This preparation was fractionated by gel filtration on Sephadex G-150 to afford two regions of enzymic activity termed geranyl pyrophosphate:pinene cyclase I (Mr approximately equal to 96,000), which catalyzed the conversion of geranyl pyrophosphate to the bicyclic olefin (+)-alpha-pinene, and to smaller quantities of the rearranged olefin (+)-camphene and the monocyclic olefin (+)-limonene, and geranyl pyrophosphate:pinene cyclase II (Mr approximately equal to 55,000), which transformed the acyclic precursor to (-)-alpha-pinene and (-)-beta-pinene, as well as to (-)-camphene, (-)-limonene, and the acyclic olefin myrcene. The multiple olefin biosynthetic activities co-purified with pinene cyclase I on four subsequent chromatographic and electrophoretic steps, and the ability to cyclize geranyl pyrophosphate and the related allylic pyrophosphates neryl pyrophosphate and linalyl pyrophosphate was likewise coincident throughout purification. Fractionation of pinene cyclase II by an identical sequence showed that the activities for the synthesis of the stereochemically related (-)-olefins co-purified, as did the ability to utilize the three acyclic precursors. The general properties of cyclase I and cyclase II were determined, and a scheme for the biosynthesis of the pinenes and related monoterpene olefins was proposed.  相似文献   

7.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   

8.
Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ~90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.  相似文献   

9.
In this study, the first fluorescent assay for bacterial cytochrome P450 BM3 (BM3) and mutants is described. BM3 mutants are potentially very versatile biocatalysts for the production of fine chemicals. A fluorescent assay would be very useful for the identification of nonnatural ligands in high-throughput inhibition assays. Because of the ease and sensitivity of alkoxyresorufin O-dealkylation assays, four different alkoxyresorufins were evaluated as substrates. Wild-type BM3 showed extremely low activity toward all four alkoxyresorufins tested. Five different BM3 mutants were constructed, carrying different combinations of mutations R47L, F87V, and L188Q, which were previously shown to increase activity toward nonnatural substrates. For all mutants, a high benzyloxyresorufin O-dealkylation (BROD) activity was found. The triple mutant of BM3, R47L/F87V/L188Q, showed the highest activity, increasing 900-fold compared to wild-type BM3. The BROD assay could also be applied in whole Escherichia coli cells; permeabilization by lipopolysaccharide deficiency strongly increased activity. To demonstrate the applicability of the BROD assay to screening for novel ligands of BM3 R47L/F87V/L188Q, a library of 45 drug-like compounds was tested for inhibition. Of these compounds, 8 showed strong inhibition of the BROD activity, demonstrating for the first time that drug-like molecules also can bind with high affinity to BM3 mutants.  相似文献   

10.
在体外,利用野生型CYP450BM-3对瓦伦西亚烯进行催化,酶-底物复合物催化NADPH氧化的速率为31±1.0 nmol(nmol P450)-1min-1,但催化产物中没有检测到圆柚酮的生成。突变体R47L/Y51F/F87A与底物复合物催化NADPH氧化的速率高于野生型,为79±6.5 nmol(nmol P450)-1min-1,并在催化产物中检测到圆柚酮的生成,但其产物选择性较差,圆柚酮的含量仅占总产物的6.8%。与此同时,检测了另一个突变体A74G/F87V/L188Q对瓦伦西亚烯的催化效果,发现其与底物复合物对NADPH的氧化速率与突变体R47L/Y51F/F87A相当,但产物中圆柚酮的比率更高,达8.0%。  相似文献   

11.
In this work, the site saturation mutagenesis of tyrosine 195, tyrosine 260 and glutamine 265 in the cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase for maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Specifically, the site-saturation mutagenesis of three sites—tyrosine 195, tyrosine 260, and glutamine 265—was performed, and it was found that the resulting mutants (containing the mutations Y195S [tyrosine → serine], Y260R [tyrosine → arginine], and Q265K [glutamine → lysine]) produced higher AA-2G yields than the wild type and the other mutant CGTases when maltodextrin was used as the glycosyl donor. Furthermore, double and triple mutations were introduced, and four mutants (containing Y195S/Y260R, Y195S/Q265K, Y260R/Q265K, and Y260R/Q265K/Y195S) were obtained and evaluated for the capacity to produce AA-2G. The Y260R/Q265K/Y195S triple mutant produced the highest titer of AA-2G at 1.92 g/liter, which was 60% higher than that (1.20 g/liter) produced by the wild-type CGTase. The kinetics analysis of AA-2G synthesis by the mutant CGTases confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, all seven mutants had lower cyclization activities and higher hydrolysis and disproportionation activities. Finally, the mechanism responsible for the enhanced substrate specificity was explored by structure modeling, which indicated that the enhancement of maltodextrin specificity may be related to the changes of hydrogen bonding interactions between the side chain of residue at the three positions (195, 260, and 265) and the substrate sugars. This work adds to our understanding of the synthesis of AA-2G and makes the Y260R/Q265K/Y195S mutant a good starting point for further development by protein engineering.  相似文献   

12.
Summary The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.Abbreviations DG distance geometry - dmFKBP-12 double-mutant (R42K,H87V) FKBP-12 - FKBP-12 FK506-binding protein (12 kDa) - FKBP-13 FK506-binding protein (13 kDa) - HSQC heteronuclear single-quantum coherence - KNOE force constant (penalty) for NOE-derived distance restraints - MD molecular dynamics - NOE nuclear Overhauser effect - SA simulated annealing - TARMD molecular dynamics with time-averaged restraints - tmFKBP-13 triple-mutant (Q50R,A95H,K98I) FKBP-13 - wtFKBP-12 wild-type FKBP-12  相似文献   

13.
(+)-Pinene cyclase (synthase) from Salvia officinalis leaf catalyzes the cyclization of geranyl pyrophosphate, via (3R)-linalyl pyrophosphate and the (4R)-alpha-terpinyl cation, to (+)-alpha-pinene and to lesser quantities of stereochemically related monoterpene olefins, whereas (-)-pinene cyclase converts the same achiral precursor, via (3S)-linalyl pyrophosphate and the (4S)-alpha-terpinyl cation, to (-)-alpha-pinene and (-)-beta-pinene and to lesser amounts of related olefins. Racemic thia analogs of the linalyl and alpha-terpinyl carbocation intermediates of the reaction sequence were previously shown to be good uncompetitive inhibitors of monoterpene cyclases, and inhibition was synergized by the presence of inorganic pyrophosphate. These results suggested that the normal reaction proceeds through a series of carbocation:pyrophosphate anion paired intermediates. Both the (4R)- and the (4S)-thia and -aza analogs of the alpha-terpinyl cation were prepared and tested as inhibitors with the antipodal pinene cyclases, both in the absence and in the presence of inorganic pyrophosphate. Although the inhibition kinetics were complex, cooperative binding of the analogs and inorganic pyrophosphate was demonstrated, consistent with ion pairing of intermediates in the course of the normal reaction. Based on the antipodal reactions catalyzed by the pinene cyclases, stereochemical differentiation between the (4R)- and the (4S)-analogs was anticipated; however, neither enzyme effectively distinguished between enantiomers of the thia and aza analogs of the alpha-terpinyl carbocation. Enantioselectivity in the enzymatic conversion of (RS)-alpha-terpinyl pyrophosphate to limonene by the pinene cyclases was also examined. Consistent with the results obtained with the thia and aza analogs, the pinene cyclases were unable to discriminate between enantiomers of alpha-terpinyl pyrophosphate in this unusual reaction. Either the alpha-terpinyl antipodes are too similar to allow differentiation by the pinene cyclases, or these enzymes lack an inherent requirement to distinguish the (4R)- and (4S)-forms because they encounter only one enantiomer in the course of the normal reaction from geranyl pyrophosphate.  相似文献   

14.
Pseudomonas aureofaciens Q2-87 produces the antibiotic 2,4-diacetophloroglucinol (Phl), which inhibits Gaeumannomyces graminis var. tritici and other fungi in vitro. Strain Q2-87 also provides biological control of take-all, a root disease of wheat caused by this fungus. To assess the role of Phl in the antifungal activity of strain Q2-87, a genetic analysis of antibiotic production was conducted. Two mutants of Q2-87 with altered antifungal activity were isolated by site-directed mutagenesis with Tn5. One mutant, Q2-87::Tn5-1, did not inhibit G. graminis var. tritici in vitro and did not produce Phl. Two cosmids were isolated from a genomic library of the wild-type strain by probing with the mutant genomic fragment. Antifungal activity and Phl production were coordinately restored in Q2-87::Tn5-1 by complementation with either cosmid. Mobilization of one of these cosmids into two heterologous Pseudomonas strains conferred the ability to synthesize Phl and increased their activity against G. graminis var. tritici, Pythium ultimum, and Rhizoctonia solani in vitro. Subcloning and deletion analysis of these cosmids identified a 4.8-kb region which was necessary for Phl synthesis and antifungal activity.  相似文献   

15.
Modification of substrate specificity of an autoprocessing enzyme is accompanied by a risk of significant failure of self-cleavage of the pro-region essential for activation. Therefore, to enhance processing, we engineered the pro-region of mutant subtilisins E of Bacillus subtilis with altered substrate specificity. A high-activity mutant subtilisin E with Ile31Leu replacement (I31L) as well as the wild-type enzyme show poor recognition of acid residues as the P1 substrate. To increase the P1 substrate preference for acid residues, Glu156Gln and Gly166Lys/Arg substitutions were introduced into the I31L gene based upon a report on subtilisin BPN' [Wells et al. (1987) Proc. Natl. Acad. Sci. USA 84, 1219-1223]. The apparent P1 specificity of four mutants (E156Q/G166K, E156Q/G166R, G166K, and G166R) was extended to acid residues, but the halo-forming activity of Escherichia coli expressing the mutant genes on skim milk-containing plates was significantly decreased due to the lower autoprocessing efficiency. A marked increase in active enzyme production occurred when Tyr(-1) in the pro-region of these mutants was then replaced by Asp or Glu. Five mutants with Glu(-2)Ala/Val/Gly or Tyr(-1)Cys/Ser substitution showing enhanced halo-forming activity were further isolated by PCR random mutagenesis in the pro-region of the E156Q/G166K mutant. These results indicated that introduction of an optimum arrangement at the cleavage site in the pro-region is an effective method for obtaining a higher yield of active enzymes.  相似文献   

16.
A recombinant Escherichia coli BL21 (DE3) strain overexpressing a variant of P450BM-3 (V26T/R47F/A74G/F87V/L188K; abbreviated: BL21 (P450BM-3 QM)) oxyfunctionalizes the bicyclic monoterpene α-pinene to α-pinene oxide, verbenol, and myrtenol. To address the low water solubility and the toxicity of terpenoids, an aqueous–organic two-phase bioprocess was developed. Diisononyl phthalate was selected as a biocompatible organic carrier solvent capable of masking the toxic effects mediated by α-pinene and of efficiently extracting the products enabling scale-up to the bioreactor. With an aqueous to organic phase ratio of 3:2 and 30% (v/v) of α-pinene in the organic phase, a biocatalytic product formation period of more than 4 h was achieved. A comparison of the biotransformation performance of BL21 (P450BM-3 QM) and a strain with an additional heterologous NADPH regeneration system comprising glucose facilitator and dehydrogenase, but only expressing half the amount of P450BM-3 QM, shows comparable product concentrations of 1,020 ± 144 and 800 ± 61 mg lAq−1, respectively. The total product yields Y P/P450 (μmol μmolP450−1) were 80% higher when the strain with the cofactor regeneration system was used. A total product concentration of over 1 g lAq−1, corresponding to the highest value reported for microbial α-pinene oxyfunctionalization so far, marks a promising step forward toward a future application of recombinant microorganisms for the selective oxidation of terpenoids to value-added products.  相似文献   

17.
Tryptases alpha and beta are trypsin-like serine proteinases expressed in large amounts by mast cells. Beta-tryptase is a tetramer that has enzymatic activity, but requires heparin binding to maintain functional and structural stability, whereas alpha-tryptase has little, if any, enzymatic activity but is a stable tetramer in the absence of heparin. As shown previously, these differences can be mainly attributed to the different conformations of the 214-220 segment. Interestingly, the replacement of Asp216 by Gly, which is present in beta-tryptase, results in enzymatically active but less stable alpha-tryptase mutants. We have solved the crystal structures of both the single (D216G) and the double (K192Q/D216G) mutant forms of recombinant human alphaI-tryptase in complex with the peptide inhibitor leupeptin, as well as the structure of the non-inhibited single mutant. The inhibited mutants exhibited an open functional substrate binding site, while in the absence of an inhibitor, the open (beta-tryptase-like) and the closed (alpha-tryptase-like) conformations were present simultaneously. This shows that both forms are in a two-state equilibrium, which is influenced by the residues in the vicinity of the active site and by inhibitor/substrate binding. Novel insights regarding the observed stability differences as well as a potential proteolytic activity of wild-type alpha-tryptase, which may possess a cryptic active site, are discussed.  相似文献   

18.
D J Weber  A K Meeker  A S Mildvan 《Biochemistry》1991,30(25):6103-6114
The mechanism of the phosphodiesterase reaction catalyzed by staphylococcal nuclease is believed to involve concerted general acid-base catalysis by Arg-87 and Glu-43. The mutual interactions of Arg-87 and Glu-43 were investigated by comparing kinetic and thermodynamic properties of the single mutant enzymes E43S (Glu-43 to Ser) and R87G (Arg-87 to Gly) with those of the double mutant, E43S + R87G, in which both the basic and acidic functions have been inactivated. Denaturation studies with guanidinium chloride, CD, and 600-MHz 1D and 2D proton NMR spectra, indicate all enzyme forms to be predominantly folded in absence of the denaturant and reveal small antagonistic effects of the E43S and R87G mutations on the stability and structure of the wild-type enzyme. The free energies of binding of the divalent cation activator Ca2+, the inhibitor Mn2+, and the substrate analogue 3',5'-pdTp show simple additive effects of the two mutations in the double mutant, indicating that Arg-87 and Glu-43 act independently to facilitate the binding of divalent cations and of 3',5'-pdTP by the wild-type enzyme. The free energies of binding of the substrate, 5'-pdTdA, both in binary E-S and in active ternary E-Ca(2+)-S complexes, show synergistic effects of the two mutations, suggesting that Arg-87 and Glu-43 interact anticooperatively in binding the substrate, possibly straining the substrate by 1.6 kcal/mol in the wild-type enzyme. The large free energy barriers to Vmax introduced by the R87G mutation (delta G1 = 6.5 kcal/mol) and by the E43S mutation (delta G2 = 5.0 kcal/mol) are partially additive in the double mutant (delta G1+2 = 8.1 kcal/mol). These partially additive effects on Vmax are most simply explained by a cooperative component to transition state binding by Arg-87 and Glu-43 of -3.4 kcal/mol. The combination of anticooperative, cooperative, and noncooperative effects of Arg-87 and Glu-43 together lower the kinetic barrier to catalysis by 8.1 kcal/mol.  相似文献   

19.
In principle, the quantitative effect of a second mutation on a mutant enzyme may be antagonistic, absent, partially additive, additive, or synergistic with respect to the first mutation. Depending on the kinetic or thermodynamic parameter measured, the D21E and R87G mutations of staphylococcal nuclease exhibit four of these five categories of interaction in the double mutant. While Vmax of the R87G single mutant of staphylococcal nuclease is 10(4.8)-fold lower than that of the wild-type enzyme and the Vmax of the D21E single mutant is 10(3.0)-fold below that of wild type, the double mutant D21E + R87G was found to lose a factor of only 10(4.1) in Vmax relative to wild type, rather than the product of the two single mutations (10(7.8)). These results suggest antagonistic structural effects of the individual R87G and D21E mutations. An alternative explanation for the nonadditivity of effects, namely, the separate functioning of these residues in a stepwise mechanism involving the prior attack of water on phosphorus followed by protonation of the leaving group by Arg-87, is unlikely since no enzyme-bound phosphorane intermediate (less than 1% of [enzyme]) was found under steady-state conditions on the R87G mutant by 31P NMR at 242.9 MHz. Like the effects on Vmax, quantitatively similar antagonistic effects of the two mutations were detected on the binding of divalent cations in binary enzyme-Ca2+ and enzyme-Mn2+ complexes and in the ternary enzyme-Ca2(+)-5'-pdTdA complex, suggesting that the effects on Vmax result from antagonistic structural changes at the Ca2+ binding site. Simple additive weakening effects of the two mutations were found on the binding of the substrate 5'-pdTdA, in both the absence and the presence of the divalent cations, Mn2+ and Ca2+. However, synergistic effects of the two mutations were found on the binding of the substrate analogue 3',5'-pdTp, profoundly weakening its binding to the double mutant in both the absence and the presence of divalent cations. Such synergistic effects of the two mutations may result from negative cooperativity or strain in the binding of 3',5'-pdTp to the wild-type enzyme. It is concluded that the quantitative interactions of two active-site mutations of an enzyme can vary greatly depending on which parameter of the enzyme is measured. When the two mutations interact in the same way on several parameters, a common underlying mechanism is suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号