首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recycling glycoproteins do not return to the cis-Golgi   总被引:7,自引:5,他引:2       下载免费PDF全文
Recycling of a number of glycoproteins along the site of action of mannosidase I (the distal endoplasmic reticulum/cis-Golgi) was followed in several different cell lines. Treatment of cells with 1-deoxymannojirimycin (dMM) produced high mannose oligosaccharides at positions otherwise occupied by complex-type oligosaccharides in these glycoproteins. Conversion of high-mannose-type oligosaccharides to complex oligosaccharides of proteins initially synthesized in the presence of dMM was used as a marker for recycling of glycoproteins along the site of action of dMM. In contrast to findings reported by Snider and Rogers (Snider, M. D., and O. C. Rogers. 1986. J. Cell Biol. 103:265-275), removal of dMM did not result in reconversion of high-mannose oligosaccharides to complex-type sugars, even after prolonged periods of culture. We conclude that surface glycoproteins do not recycle through the cis-medial Golgi elements.  相似文献   

2.
Mucin glycoproteins were purified from extracts of swine trachea mucosa and Cowper's gland. The gelatinous extracts were solubilized by reduction and carboxymethylation and then purified by chromatography on Sepharose CL-6B and DEAE-Sepharose. The structure of some of the carbohydrate units in these glycoproteins were determined and compared. Alkaline borohydride treatment indicated that more than 85% of the carbohydrate chains in these glycoproteins were linked to serine or threonine residues in the polypeptide chain through O-glycosidic bonds with N-acetylgalactosamine. Reduced oligosaccharides released by treatment with alkaline borohydride were isolated by gel filtration on Bio-Gel P-6 and chromatography on DEAE-cellulose and paper. The structures of the oligosaccharides were established by methylation analysis, gas chromatography, and sequential hydrolysis with specific exoglycosidases. The major oligosaccharides in Cowper's gland mucin glycoproteins were sialylated short chains: NeuAc alpha 2,6GalNAcol and NeuAc alpha 2,3Gal beta 1,3(NeuAc alpha 2,6)GalNAcol. In marked contrast, branched chains containing a Gal beta 1,3(GlcNAc beta 1,6)GalNAc core unit were the major components of trachea mucin glycoprotein. Ten of these chains had the following structures: (Formula: see text).  相似文献   

3.
To determine whether specific asparagine-linked (N-linked) oligosaccharides present in cell surface glycoproteins are required for cell-cell interactions within the peripheral nervous system, we have used castanospermine to inhibit maturation of N-linked sugars in cell cultures of neurons or neurons plus Schwann cells. Maximally 10-15% of the N-linked oligosaccharides on neuronal proteins have normal structure when cells are cultured in the presence of 250 micrograms/ml castanospermine; the remaining oligosaccharides are present as immature carbohydrate chains not normally found in these glycoproteins. Although cultures were treated for 2 wk with castanospermine, cells always remained viable and appeared healthy. We have analyzed several biological responses of embryonic dorsal root ganglion neurons, with or without added purified populations of Schwann cells, in the presence of castanospermine. We have observed that a normal complement of mature, N-linked sugars are not required for neurite outgrowth, neuron-Schwann cell adhesion, neuron-induced Schwann cell proliferation, or ensheathment of neurites by Schwann cells. Treatment of neuronal cultures with castanospermine increases the propensity of neurites to fasciculate. Extracellular matrix deposition by Schwann cells and myelination of neurons by Schwann cells are greatly diminished in the presence of castanospermine as assayed by electron microscopy and immunocytochemistry, suggesting that specific N-linked oligosaccharides are required for the expression of these cellular functions.  相似文献   

4.
To accurately characterize the carbohydrate moieties of oligosaccharide chains in glycosylated proteins, it is necessary to distinguish exactly which types of oligosaccharides are present at which site. We describe lectin overlay assays, which take advantage of the ability of lectins to distinguish between different types of glycoproteins via recognition of terminal sugars, thus allowing the chain type and peripheral antigenic components to be determined. Three microassays involving lectins are reported in this paper: non-proteasetreated intact glycoproteins; glycopeptides released by prior digestion of the glycoprotein and then separated by HPLC; and release of sugars from glycoproteins by hydrazinolysis and then coupling them to a multivalent support.  相似文献   

5.
We have purified and biochemically analyzed individual cell wall glycoproteins of Pneumocystis carinii. Our results show that corresponding core glycoproteins constitute the cell wall antigens in both trophozoites and cysts, and glycosylation of these glycoproteins does not appear to be significantly altered during development. Cysts and trophozoites in rat-derived organism preparations were separated from each other by counterflow centrifugal elutriation, then treated with Zymolyase to obtain the cell wall fractions. Gel electrophoresis patterns of these fractions from both life-cycle stages were qualitatively similar. Ten major antigenic glycoproteins in these fractions were purified by preparative continuous elution gel electrophoresis. All ten glycoproteins from cysts and trophozoites contained mannose, glucose, galactose. and N-acetylglucosamine, and some contained traces of fucose. The glycoproteins of cysts had more mannose than their trophozoite counterparts. The trophozoite glycoproteins differed from those of the cyst by the presence of xylose. To examine the species-specificity of glycoprotein glycosylation, preparations of human-derived P. carinii (comprised of mixed life-cycle stages) were also examined and found to contain the same sugars as those found in rat-derived organisms. Most of the purified rat-derived glycoproteins bound Concanavalin A, which was abolished by treatment with N-glycanase. This suggested that the majority of the oligosaccharides were N-linked to the proteins, but attempts to identify carbohydrate linkage sites by amino acid sequencing were hampered by apparent modifications of residues. The peptides derived by cyanogen bromide cleavage revealed distinct size patterns for each glycoprotein, suggesting that they were distinct proteins. Most of the glycoproteins reacted with monoclonal antibodies which recognize a highly conserved epitope on rat P. carinii. Four of the individually purified glycoprotein preparations elicited in vitro cellular immune responses, implicating their involvement in the recognition of P. carinii by host T cells. The identification and characterization of P. carinii cell wall proteins will be helpful in analyzing the relationship of the organism to its mammalian host. Supplementary key words. Biochemical analysis, developmental stages, opportunistic pathogen, structure.  相似文献   

6.
A method to characterize plant cell wall polysaccharides is presented. The complexity of the polymer structures and the large number of different charged and uncharged monosaccharides that make up plant polysaccharides have previously made analysis technically demanding and laborious. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) relies on derivatization of reducing ends of sugars and oligosaccharides with a fluorophore, followed by electrophoresis under optimized conditions in polyacrylamide gels. We show that PACE is a sensitive and simple tool for studying the monosaccharide composition of polysaccharides and of cell wall preparations. In combination with specific hydrolases, it can be used to analyze the structure of polysaccharides. Moreover, the specificity and kinetics of the plant polysaccharide hydrolases themselves can be quickly and effectively studied. PACE can detect as little as 500 fmol of monosaccharides and 100 fmol of oligosaccharides, and it is fast and quantitative.  相似文献   

7.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

8.
The membrane glycoproteins from control (BHK21/C13) and Rous sarcoma virus-transformed (C13/B4) baby hamster kidney cells labeled with D-[14C]- or D-[3H]glucosamine, respectively, were purified by means of polyacrylamide electrophoresis and gel electrofocusing. The homogeneity of the isolated glycoproteins was demonstrated by analysis of the NH2-terminal peptides. Some purified glycoproteins were found to be hybrid molecules in terms of the type of oligosaccharides they bear. The majority of the oligosaccharides (approximately 90%) bound on thee glycoproteins are N-glycosidically linked (Mr approximately 3000 to 5000). Another 5% appears to be small groups linked O-glycosidically to several adjacent or closely spaced amino acid residues. The remainder (5%) of the carbohydrate groups appears to be small, covalently bound glycosaminoglycans. This is the first report of hybrid molecules bearing glycosaminoglycans in the cell surface. The ratio of the types of oligosaccharides varies among different glycoproteins. There is slightly more glycosaminoglycan present on glycoproteins from malignant cells. A remarkably complex but similar array of N-glyucosidically linked oligosccharides is bound to different individual membrane glycoproteins. Each individual polypeptide must contain only a small number of the total observed carbohydrate groups, i.e. the carbohydrate groups on individual polypeptides are grossly heterogeneous. This implies that purification is based largely on the characteristics of the polypeptide, and that overall charge and size of the carbohydrate groups are relatively constant in a single population of glycoproteins. Our results suggest that the differences between the carbohydrate groups derived from glycoproteins from control and transformed cells are mainly quantitative.  相似文献   

9.
The hepatitis B surface antigen, which constitutes the currently available vaccine, is the empty envelope of the hepatitis B virus. We investigated the carbohydrate structures of the envelope glycoproteins. The intact oligosaccharides were enzymatically released from the coat glycoproteins using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase F and isolated by gel permeation chromatography. Cesium ion liquid secondary ion mass spectra of the intact, underivatized oligosaccharides showed molecular weights of 1932, 2078, and 2223. The mixture included partially and totally sialylated structures, a fraction (approximately 8%) of which were substituted with a single terminal fucose residue; no desialylated oligosaccharides were detected. The reducing termini of the oligomers were derivatized by reduction of the Schiff base formed using p-aminobenzoic acid ethyl ester, and fragmentation patterns identical to those produced from standard biantennary complex oligosaccharides were obtained. Methylation linkage analysis of the oligosaccharides showed that the carbohydrate composition and the mannose branching patterns also resembled those of a biantennary oligosaccharide. The results of this study indicate that glycosylation of the hepatitis B surface antigen, which takes place in the liver, is typical of other serum glycoproteins made in the liver; and this analytical strategy, including cesium ion liquid secondary ion mass spectrometry, is an effective approach for the structural analysis of complex carbohydrates available in only the 1-10 micrograms sample size range.  相似文献   

10.
Endo-alpha-D-mannosidase, a Golgi-situated processing enzyme, provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins (Moore, S. E. H., and Spiro, R. G. (1990) J. Biol. Chem. 265, 13104-13112). The present report demonstrates that at least five distinct glycoproteins secreted by HepG2 cells (alpha 1-antitrypsin, transferrin, alpha 1-acid glycoprotein, alpha 1-antichymotrypsin, and alpha-fetoprotein) as well as cell surface components can effectively utilize this alternate processing route. During a castanospermine (CST)-imposed glucosidase blockade, these glycoproteins apparently were produced with their usual complement of complex carbohydrate units, and upon addition of the mannosidase I inhibitor, 1-deoxymannojirimycin (DMJ), to prevent further processing of deglucosylated N-linked oligosaccharides, Man6-8GlcNAc, but not Man9GlcNAc, were identified; the Man8GlcNAc component occurred as the characteristic isomer generated by endomannosidase cleavage. Although the endomannosidase-mediated deglucosylation pathway appeared to be nonselective, a differential inhibitory effect on the secretion of the various glycoproteins was noted in the presence of CST which was directly related to the number of their N-linked oligosaccharides, ranging from minimal in alpha-fetoprotein to substantial (approximately 65%) in alpha 1-acid glycoprotein. Addition of DMJ to CST-incubated cells did not further decrease secretion of the glycoproteins, although processing was now arrested at the polymannose stage, and a portion of the oligosaccharides were still in the glucosylated form. These latter findings indicate that complex carbohydrate units are not required for secretion of these glycoproteins and that any effect which glucose residues exert on their intracellular transit would be related to movement from the endoplasmic reticulum to the Golgi compartment.  相似文献   

11.
Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100 pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques.  相似文献   

12.
The biosynthesis and the processing of asparagine-linked oligosaccharides of cellular membrane glycoproteins were examined in monolayer cultures of BHK21 cells and human diploid fibroblasts after pulse-and pulse-chase labeling with [2-3H] mannose. After pronase digestion, radiolabeled glycopeptides were characterized by high-resolution gel filtration, with or without additional digestion with various exoglycosidases and endoglycosidases. Pulse-labeled glycoproteins contained a relatively homogenous population of neutral oligosaccharides (major species: Man9GlcNAc2ASN). The vast majority of these asparagine-linked oligosaccharides was smaller than the major fraction of lipid-linked oligosaccharides from the cell and was apparently devoid of terminal glucose. After pulse-chase or long labeling periods, a significant fraction of the large oligomannosyl cores was processed by removal of mannose units and addition of branch sugars (NeuNAc-Gal-GlcNAc), resulting in complex acidic structures containing three and possibly five mannoses. In addition, some of the large oligomannosyl cores were processed by the removal of only several mannoses, resulting in a mixture of neutral structures with 5–9 mannoses. This oligomannosyl core heterogeneity in both neutral and acidic oligosaccharides linked to asparagine in cellular membrane glycoproteins was analogous to the heterogeneity reported for the oligosaccharides of avian RNA tumor virus glycoproteins (Hunt LA, Wright SE, Etchison JR, Summers DF: J Virol 29:336, 1979).  相似文献   

13.
A problem of conformations of carbohydrate chains of glycoconjugates-glycoproteins and glycolipids--is reviewed. Experimental data (NMR, X-Ray) and theoretical conformational analysis data are discussed. Spatial structures of O-linked oligosaccharides from blood-group glycoproteins, N-linked oligosaccharides of different types (oligomannosidic, complex, hybrid, bisect) and carbohydrate chains of glycosphingolipids are considered.  相似文献   

14.
Fluorometric analysis of amino sugars and derivatized neutral sugars   总被引:5,自引:0,他引:5  
A rapid and sensitive procedure for the analysis of neutral and amino sugars is presented. Neutral sugars are separated after conversion to the corresponding glycamines, while the amino sugars are analyzed without modification, using an automatic amino acid analyzer and fluorometric detection. The method has been applied for the analysis of glycoproteins and oligosaccharides of the complex and high-mannose types.  相似文献   

15.
Influenza-virus-infected cells were labelled with radioactive sugars and extracted to give fractions containing lipid-linked oligosaccharides and glycoproteins. The oligosaccharides linked to lipid were of the 'high-mannose' type and contained glucose. In the glycoprotein fraction, radioactivity was associated with virus proteins and found to occur predominantly in the 'high-mannose' type of glycopeptides. In the presence of the inhibitors 2-deoxy-D-glucose, 2-deoxy-2-amino-D-glucose (glucosamine), 2-deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose incorporation of radiolabelled sugars into lipid- and protein-linked oligosaccharides was decreased. Kinetic analysis showed that the inhibitors affected first the assembly of lipid-linked oligosaccharides and then protein glycosylation after a lag period. During inhibition by deoxyglucose and the fluoro sugars lipid-linked oligosaccharides were formed that contained oligosaccharides of decreased molecular weight. No such aberrant forms were found during inhibition by glucosamine. In the case of inhibition by deoxyglucose it was shown that the aberrant oligosaccharides were not transferred to protein. Inhibition of formation of lipid-linked oligosaccharides by deoxyglucose and fluoro sugars was antagonized by mannose, in which case oligosaccharides of normal molecular weight were formed. The inhibition by glucosamine was reversed by its removal from the medium. The reversible effects of these inhibitors exemplify their usefulness as tools in the study of glycosylation processes.  相似文献   

16.
The covalent attachment of carbohydrate to proteins is a very common co- or post-translational event in the biosynthesis of glycoproteins. The type and heterogeneity of these oligosaccharides can affect a range of physico-chemical and biological properties of a glycoprotein. Thus the development of sensitive, reliable and robust analytical methods for carbohydrate analysis is important in the pharmaceutical industry, especially in the recombinant production of experimental and therapeutic glycoproteins. In this report we have reviewed methodology for the in-gel enzymatic release of N-linked oligosaccharides from glycoproteins separated by electrophoresis. These oligosaccharides are derivatised by reductive amination using 3-acetamido-6-aminoacridine (AA-Ac), a novel, highly fluorescent probe. A major advantage of this technique is that glycan derivatives are amenable to analysis by an array of chromatographic and mass spectrometric methods, allowing the resolution and characterisation of a wide variety of glycan structures. It is hoped that in due course the methodology described will be applied to proteomics studies, especially in identifying the role of carbohydrate in protein function and disease.  相似文献   

17.
Plasma membrane glycoproteins of rat hepatocytes undergo a rapid terminal deglycosylation in that the terminal sugars of the oligosaccharide side chains are rapidly removed from the otherwise intact glycoproteins [Tauber, R., Park, C.S. & Reutter, W. (1983) Proc. Natl Acad. Sci. USA 80, 4026-4029]. The present paper demonstrates that this rapid intramolecular turnover of plasma membrane glycoproteins is not restricted to peripheral sugars but, in contrast to liver, in hepatoma the core sugars of the oligosaccharide chains are also involved. Intramolecular turnover was measured in Morris hepatoma 7777 in five plasma membrane glycoproteins with Mr of 85,000 (hgp85), 105,000 (hgp105), 115,000 (hgp115), 125,000 (hgp125), 175,000 (hgp175) (hgp = hepatoma glycoprotein) that were isolated and purified to homogeneity by concanavalin-A--Sepharose affinity chromatography and semipreparative SDS gel electrophoresis. Analysis of the carbohydrates of hgp85, hgp105, hgp115 and hgp125 revealed the presence of N-linked oligosaccharides containing L-fucose, D-galactose, D-mannose and N-acetyl-D-glucosamine, but only of trace amounts of N-acetyl-D-galactosamine; hgp175 additionally contained significant amounts of N-acetyl-D-galactosamine, indicating the presence of both N- and O-linked oligosaccharides. As shown by digestion with endoglucosaminidase H, the N-linked oligosaccharides of hgp105, hgp115, hgp125 and hgp175 were of the complex type, whereas hgp85 also contained oligosaccharides of the high-mannose type. Half-lives of the turnover of the oligosacharide chains and of the protein backbone of the five glycoproteins were measured in the plasma membrane in pulse-chase experiments in vivo, using L-[3H]fucose as a marker of terminal sugars, D-[3H]mannose as marker of a core sugar and L-[3H]leucine for labelling the protein backbone. Protein backbones of the five glycoproteins were degraded with individual half-lives ranging over 41-90 h with a mean of 66 h. Compared to the degradation of the polypeptide backbone, both the terminal sugar L-fucose and the core sugar D-mannose turned over with much shorter half-lives averaging about 20 h in the five glycoproteins. The data show that, conversely to liver, within plasma membrane glycoproteins of hepatoma not only peripheral sugars but also core sugars of the oligosaccharides are split off during the life-span of the protein backbone. It may therefore be assumed that this reprocessing of plasma membrane glycoproteins is sensitive to malignant transformation.  相似文献   

18.
The carbohydrate content of Sindbis virus was determined by gas chromatographic analysis. The two viral glycoproteins were found to be approximately 8% carbohydrate by weight. Mannose is the sugar present in the largest amount. Smaller amounts of glucosamine, galactose, sialic acid, and fucose were also detected. Each of the two viral glycoproteins appears to contain two structurally unrelated oligosaccharides. Two of the three Sindbis-specific glycoproteins found in infected chick cells were shown to contain short, unfinished oligosaccharides.  相似文献   

19.
A method for determining low-molecular carbohydrates based on the use of HPLC with refractometric detection was modified. In contrast to previous methods, the determination of the qualitative and quantitative composition of sugars in plant extracts was performed without their preliminary separation into monosaccharides, disaccharides, and oligosaccharides. The exclusion of an additional separation stage made it possible to reduce twofold the time of analysis of a single sample, to save expensive materials necessary for carbohydrate HPLC, and to increase the useful life of the analytical column.  相似文献   

20.
The O-linked oligosaccharides on mature forms of herpes simplex virus type 1 (HSV1) glycoproteins were characterized, and were found to account largely for the lower electrophoretic mobilities of these forms relative to the mobilities of immature forms. Other posttranslational modifications of HSV1 glycoproteins (designated gB, gC, gD and gE) were related temporally to the discrete shifts in electrophoretic mobilities that signal acquisition of the O-linked oligosaccharides. Fatty acid acylation (principally of gE) could be detected just prior to the shifts, whereas conversion of high-mannosetype N-linked oligosaccharides to the complex type occurred coincident with the shifts. The addition of O-linked oligosaccharides did not occur in cells treated with the ionophore monensin or in a ricinresistant cell line defective in the processing of N-linked oligosaccharides. We conclude that extension of O-linked oligosaccharide chains on HSV1 glycoproteins, and probably also attachment of the first O-linked sugars, occurs as a late posttranslational modification in the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号