首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Suspension cell cultures of Helianthus annuus L. were previously established for the production of the most active component of vitamin E, alpha-tocopherol, by optimizing medium composition and culture conditions. In the present work, the possibility of enhancing alpha-tocopherol production by the addition of jasmonic acid to the culture medium was investigated both in sunflower and Arabidopsis cell cultures. A considerable increase (49% and 66%, respectively) of alpha-tocopherol production was obtained in both, after a 72-h treatment with 5 microM jasmonic acid. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.  相似文献   

2.
In this work, sequential optimization strategy, based on statistical designs, was employed to enhance the production of citric acid in submerged culture. For screening of fermentation medium composition significantly influencing citric acid production, the two-level Plackett-Burman design was used. Under our experimental conditions, beet molasses and corn steep liquor were found to be the major factors of the acid production. A near optimum medium formulation was obtained using this method with increased citric acid yield by five-folds. Response surface methodology (RSM) was adopted to acquire the best process conditions. In this respect, the three-level Box-Behnken design was applied. A polynomial model was created to correlate the relationship between the three variables (beet molasses, corn steep liquor and inoculum concentration) and citric acid yield. Estimated optimum composition for the production of citric acid is as follows pretreated beet molasses, 240.1g/l; corn steep liquor, 10.5g/l; and spores concentration, 10(8)spores/ml. The optimum citric acid yield was 87.81% which is 14 times than the basal medium. The five level central composite design was used for outlining the optimum values of the fermentation factors initial pH, aeration rate and temperature on citric acid production. Estimated optimum values for the production of citric acid are as follows initial pH 4.0; aeration rate, 6500ml/min and fermentation temperature, 31.5 degrees C.  相似文献   

3.
Summary Investigations have been carried out on lactic acid production by Lactobacillus helveticus CNRZ 303 in whey ultrafiltrate. Addition of beet molasses was investigated with good results, although yeast extract proved to be more effective. The size of inoculum and the preculture medium also played a significant role in determining the amount of lactic acid produced during the fermentation process. High lactose consumption (94.09%), together with good lactic acid production (26.09 g/l) and yield (0.90%), were obtained in whey ultrafiltrate supplemented with 1% (w/v) beet molasses (WUM), with a 10% (w/v) inoculum and peptonized milk as preculture medium. Although these results were similar to those obtained when yeast extract was used as supplement, the maximum volumetric productivities proved to be quite different, and were definitely higher with yeast extract. Offprint requests to: L. Chiarini  相似文献   

4.
Citric acid production by Aspergillus niger is sensitive to pH, temperature and the concentration of carbohydrate in the medium. The maximum production of citric acid, 19.5% (w/v) is obtained at pH 5.4 in a 16% (w/v) molasses medium fermenting at 28°C.  相似文献   

5.
AIM: Development and optimization of an efficient and inexpensive medium for succinic acid production by Escherichia coli under anaerobic conditions. METHODS AND RESULTS: Initially, 0.8 gl(-1) of succinic acid was produced in 60 h in 300-ml medium. On optimization, glucose and peptone were replaced by cane molasses and corn steep liquor. Three hundred ml of this medium was inoculated with 4% (v/v) of seed inoculum, incubated at 39 degrees C for 72 h, resulted in 7.1 gl(-1) of succinic acid in 36 h. Scale up in a 10-l fermentor under conditions of controlled pH and continuous CO2 supply in this medium resulted in 17 gl(-1) of succinic acid in 30 h. CONCLUSIONS: A ninefold increase in succinic acid production was obtained in 500-ml anaerobic bottles with optimized medium having cane molasses and corn steep liquor as against initial medium containing glucose and peptone. However, a subsequent scale up in a 10-l fermentor resulted in a 2.5-fold increase in succinic acid production as against optimized medium used in 500-ml anaerobic bottles. SIGNIFICANCE AND IMPACT OF THE STUDY: Succinic acid production was enhanced in medium consisting of inexpensive carbon and nitrogen sources in a shorter span of time.  相似文献   

6.
AIMS: Statistical optimization of phytase production by a thermophilic mould Sporotrichum thermophile in a cost-effective cane molasses medium. METHODS AND RESULTS: Sporotrichum thermophile secreted phytase in cane molasses medium at 45 degrees C and 250 rev min(-1) after 5 days. The important factors identified by Plackett-Burman design (magnesium sulfate, Tween 80, ammonium sulfate and incubation period) were further optimized by response surface methodology (RSM). An overall 107% improvement in phytase production was achieved due to optimization. Supplementation of the medium with inorganic phosphate repressed the enzyme synthesis. When inorganic phosphate was reduced from the cane molasses medium by treatment with calcium chloride, the enzyme production increased. The phytase activity was not affected by the enzyme treatment with trypsin and pepsin. CONCLUSIONS: A twofold increase in phytase production was achieved due to optimization using statistical designs in a cost-effective cane molasses medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase production was doubled due to optimization. The enzyme, being resistant to trypsin and pepsin, thermostable and acid stable, can find application in animal feed industry for improving nutritional status of the feed and combating environmental phosphorus pollution.  相似文献   

7.
Poly(L-malic acid) (PMA) is a natural polyester with many attractive properties for biomedical application. However, the cost of PMA production is high when glucose is used as a carbon source. To solve this problem, cane molasses as a low-cost feedstock was applied for the production of PMA. Six pretreatment methods were applied to cane molasses before fermentation. Pretreatment with combined tricalcium phosphate, potassium ferrocyanide, and sulfuric acid (TPFSA) removed significant amounts of metal ions from cane molasses. The PMA concentration increased from 5.4?g/L (untreated molasses) to 36.9?g/L (TPFSA-pretreated molasses) after fermentation in shake flasks. A fed-batch fermentation strategy was then developed. In this method, TPFSA-pretreated cane molasses solution was continuously fed into the fermentor to maintain the total sugar concentration at 20?g/L. This technique generated approximately 95.4?g/L PMA with a productivity of 0.57?g/L/hr. The present study indicated that fed-batch fermentation using pretreated cane molasses is a feasible technique for producing high amounts of PMA.  相似文献   

8.
Ergosterol is an economically important metabolite produced by fungi. Recombinant Saccharomyces cerevisiae YEH56(pHXA42) with increased capacity of ergosterol formation was constructed by combined overexpression of sterol C-24(28) reductase and sterol acyltransferase in the yeast strain YEH56. The production of ergosterol by this recombinant strain using cane molasses (CM) as an inexpensive carbon source was investigated. An ergosterol content of 52.6 mg/g was obtained with 6.1 g/l of biomass from CM medium containing 60 g/l of total sugar in 30 h in shake flask. The ergosterol yield was enhanced through the increasing cell biomass by supplementation of urea to a concentration of 6 g/l in molasses medium. Fermentation was performed in 5-l bioreactor using the optimized molasses medium. In batch fermentation, the effect of agitation velocity on ergosterol production was examined. The highest ergosterol yield was obtained at 400 rpm that increased 60.4 mg/l in comparison with the shake flask culture. In fed-batch fermentation, yeast cells were cultivated, firstly, in the starting medium containing molasses with 20 g/l of total sugar, 1.68 g/l of phosphate acid, and 6 g/l of urea (pH 5.4) for 5 h, then molasses containing 350 g/l of total sugar was fed exponentially into the bioreactor to keep the ethanol level in the broth below 0.5%. After 40 h of cultivation, the ergosterol yield reached 1,707 mg/l, which was 3.1-fold of that in the batch fermentation.  相似文献   

9.
Citric acid production (CAP) by Aspergillus niger was obtained following culture on an orange peel medium (OPM) fortified with cane molasses. The key physico-chemical parameters influencing CAP, such as bed loading, moisture levels, volume and age of inoculum, initial pH, incubation temperature and duration, agitation rate, sugar concentration, addition of nitrogen and phosphorus sources, treatment of molasses and the addition of different low levels of alcohols, were assessed. The suitability of molasses to increase the concentration of sugar in the fermentation medium without previous treatments with EDTA or ferro-cyanide was indicated. Maximum amounts of CA (640 g/kg orange peel) were obtained after 72 h of incubation on an OPM moisturized to 65 %?w/v, with bed loading of 20 %, an initial pH of 5, a temperature of 30 °C, an agitation rate of 250 rpm, with fortification of the medium with molasses at a final sugar concentration of 14 % in the presence of 3.5 % methanol.  相似文献   

10.
The present investigation deals with citric acid production by some selected mutant strains of Aspergillus niger from cane molasses in 250 ml Erlenmeyer flasks. For this purpose, a conidial suspension of A. niger GCB-75, which produced 31.1 g/l citric acid from 15% (w/v) molasses sugar, was subjected to UV-induced mutagenesis. Among the 3 variants, GCM-45 was found to be a better producer of citric acid (50.0 +/- 2a) and it was further improved by chemical mutagenesis using N-methyl, N-nitro-N-nitroso-guanidine (MNNG). Out of 3,2-deoxy-D-glucose resistant variants, GCMC-7 was selected as the best mutant, which produced 96.1 +/- 1.5 g/l citric acid 168 h after fermentation of potassium ferrocyanide and H2SO4 pre-treated blackstrap molasses in Vogel's medium. On the basis of kinetic parameters such as volumetric substrate uptake rate (Qs), and specific substrate uptake rate (qs), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and produced more citric acid. The mutant GCMC-7 has greater commercial potential than the parental strain with regard to citrate synthase activity. The addition of 2.0 x 10(-5) M MgSO4 x 5H2O into the fermentation medium reduced the Fe2+ ion concentration by counter-acting its deleterious effect on mycelial growth. The magnesium ions also induced a loose-pelleted form of growth (0.6 mm, diameter), reduced the biomass concentration (12.5 g/l) and increased the volumetric productivity of citric acid monohydrate (113.6 +/- 5 g/l).  相似文献   

11.
Bacterial cellulose production by fed-batch fermentation in molasses medium   总被引:2,自引:0,他引:2  
Bae S  Shoda M 《Biotechnology progress》2004,20(5):1366-1371
Batch and fed-batch fermentations for bacterial cellulose (BC) production using molasses as a carbon source by Acetobacter xylinum BPR2001 were carried out in a jar fermentor. For improvement of BC production, molasses was subjected to H2SO4-heat treatment. The maximum BC concentration by this treated molasses increased 76%, and the specific growth rate increased 2-fold compared with that by untreated molasses. In batch fermentation, when the initial sugar concentrations of H2SO4-heat-treated molasses were varied from 20 to 70 g/L, the highest value of maximum BC concentration of 5.3 g/L was observed at 20 g/L. BC production in intermittent fed-batch (IFB) fermentation was conducted referring to the data in batch fermentation, and the highest BC production of 7.82 g/L was obtained when 0.2 L of molasses medium was added five times. When continuous fed-batch (CFB) fermentations were conducted, maximum BC concentration was obtained with a feeding rate of 6.3 g-sugar/h, which was derived from the optimal IFB experiment.  相似文献   

12.
Laccase is among the major enzymes of white rot fungi involved in lignocellulose degradation. The present paper reports its production by two white rot fungi (Coriolus versicolor, Funalia trogii) under different nutritional conditions. Various synthetic culture media and natural culture medium (molasses wastewater) were tested. Enzyme production in various synthetic culture media, molasses wastewater (vinasse) culture medium and in the absence or presence of cotton stalk supplements showed that vinasse culture medium was a better laccase-inducer medium than the synthetic culture medium. Addition of cotton stalk to various media enhanced the enzyme production. The highest laccase activity was obtained in vinasse culture medium with cotton stalk.  相似文献   

13.
Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale.  相似文献   

14.
In the present work, erythromycin production was carried out in submerged culture using Saccharopolyspora erythraea. Different experiments were conducted to optimize the cultivation medium through the change of carbon and nitrogen sources to cheaper one in order to reduce the cost of medium and to utilize sugar cane molasses as one of major sugar industry by-products in Egypt. It was found that the addition of sugar cane molasses a sole carbon source at a concentration of 60 g/l accompanied by corn steep liquor (as organic N-source) in combination with ammonium sulphate (as inorganic N-source) gave the maximal erythromycin production. The antibiotic production in this medium reached about 600 mg/l which is about 33% higher than the value obtained in glucose based medium. On the other hand, the addition of n-propanol in concentration of 1% (v/v) increased the antibiotic production reaching about 720 mg/l after 144 h. Concluding, the new medium formulation based on cheap carbon source, sugar cane molasses, was a good alternative solution for the production of erythromycin economically.  相似文献   

15.

Salinity is a major environmental stress that limits plant production and portraits a critical challenge to food security in the world. In this research, the impacts of plant growth–promoting bacteria (Pseudomonas RS-198 and Azospirillum brasilense RS-SP7) and foliar application of plant hormones (salicylic acid 1 mM and jasmonic acid 0.5 mM) on alleviating the harmful effects of salt stress in rapeseed plants (Brassica napus cv. okapi) were examined under greenhouse condition. Salt stress diminished rapeseed biomass, leaf area, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and chlorophyll content, while it increased sodium content, endogenous salicylic and jasmonic acids, osmolyte production, H2O2 and O2•− generations, TBARS content, and antioxidant enzyme activities. Plant growth, nutrient content, leaf expansion, osmolyte production, and antioxidant enzyme activities were increased, but oxidative and osmotic stress indicators were decreased by bacteria inoculation + salicylic acid under salt stress. Antioxidant enzyme activities were amplified by jasmonic acid treatments under salt stress, although rapeseed growth was not generally affected by jasmonic acid. Bacterial + hormonal treatments were superior to individual treatments in reducing detrimental effects of salt stress. The best treatment in rectifying rapeseed growth under salt stress was combination of Pseudomonas and salicylic acid. This combination attenuated destructive salinity properties and subsequently amended rapeseed growth via enhancing endogenous salicylic acid content and some essential nutrients such as potassium, phosphorus, and magnesium.

  相似文献   

16.
Surface culture citric acid fermentation was carried out by Aspergillus niger T55, a strain isolated from its natural source, using cane molasses, either untreated or treated by various methods. Citric acid biosynthesis is seriously impaired by both organic and inorganic inhibitors. A combined treatment of molasses with tricalcium phosphate, hydrochloric acid, and Sephadex fractionation minimizes the level of inorganic and organic inhibitors in molasses and increases the production of citric acid (65% weight yield based on total reducing sugar). The optimum level of individual metal ions for citric acid production depends on the concentration of other metals in the medium.  相似文献   

17.
AIM: Formulation of an inexpensive cane molasses medium for improved cell-bound phytase production by Pichia anomala. METHODS AND RESULTS: Cell-bound phytase production by Pichia anomala was compared in synthetic glucose-beef extract and cane molasses media. The yeast was cultivated in 250 ml flasks containing 50 ml of the medium, inoculated with a 12 h-old inoculum (3 x 10(6) CFU ml(-1)) and incubated at 25 degrees C for 24 h at 250 rev min(-1). Different cultural parameters were optimized in cane molasses medium in batch fermentation. The cell-bound phytase content increased significantly in cane molasses medium (176 U g(-1) dry biomass) when compared with the synthetic medium (100 U g(-1) dry biomass). In fed-batch fermentation, a marked increase in biomass (20 g l(-1)) and the phytase yield (3000 U l(-1)) were recorded in cane molasses medium. The cost of production in cane molasses medium was pound 0.006 per 1000 U, which is much lower when compared with that in synthetic medium (pound 0.25 per 1000 U). CONCLUSIONS: An overall 86.6% enhancement in phytase yield was attained in optimized cane molasses medium using fed-batch fermentation when compared with that in synthetic medium. Furthermore, the production in cane molasses medium is cost-effective. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase yield was improved in cane molasses when compared with the synthetic medium, and the cost of production was also significantly reduced. This enzyme can find application in the animal feed industry for improving the nutritional status of feed and combating environmental pollution.  相似文献   

18.
Pactamycin Production by Streptomyces pactum   总被引:1,自引:0,他引:1       下载免费PDF全文
The optimal fermentation conditions for the production of pactamycin, a new antitumor antibiotic, by Streptomyces pactum var. pactum were investigated. The optimal pH range for growth was 6.5 to 7.0. The optimal temperature for the growth of the culture and the production of the antibiotic was investigated in a medium containing Cerelose, blackstrap molasses, Pabst yeast, Kay Soy, CaCO3, and KCl. Since maximal growth and maximal production efficiency was obtained at 32 C, all subsequent fermentations were conducted at this temperature. Pactamycin was bound to the mycelium in different amounts, depending on the fermentation conditions, and could be extracted with acetone. Good yields (216 μg/ml) of pactamycin could be obtained in a medium containing Cerelose, soy-peptone, calcium carbonate, and potassium chloride. Analysis of the biochemical changes during fermentation indicated that pactamycin was produced during the later autolytic phase.  相似文献   

19.
Zhu LY  Zong MH  Wu H 《Bioresource technology》2008,99(16):7881-7885
Effects of medium components and culture conditions on biomass and lipid production of Trichosporon fermentans were studied. The optimal nitrogen source, carbon source and C/N molar ratio were peptone, glucose and 163, respectively. The favorable initial pH of the medium and temperature were 6.5 and 25 degrees C. Under the optimized conditions, a biomass of 28.1 g/l and a lipid content of 62.4% could be achieved after culture for 7 days, which were much higher than the original values (19.4 g/l and 50.8%) and the results reported by other groups. T. fermentans could grow well in pretreated waste molasses and a lipid yield of 12.8 g/l could be achieved with waste molasses of 15% total sugar concentration (w/v) at pH 6.0, representing the best result with oleaginous microorganisms on agro-industrial residues. Addition of various sugars to the pretreated molasses could efficiently enhance the accumulation of lipid and the lipid content reached as high as above 50%. Similar to vegetable oils, the lipid mainly contains palmitic acid, stearic acid, oleic acid and linoleic acid and the unsaturated fatty acids amount to about 64% of the total fatty acids. The microbial oil with an acid value of 5.6 mg KOH/g was transesterified to biodiesel by base catalysis after removal of free fatty acids and a high methyl ester yield of 92% was obtained.  相似文献   

20.
 The use of molasses as a substrate for ethanol production by the thermotolerant yeast Kluyveromyces marxianus var. marxianus was investigated at 45°C. A maximum ethanol concentration of 7.4% (v/v) was produced from unsupplemented molasses at a concentration of 23% (v/v). The effect on ethanol production of increasing the sucrose concentration in 23% (v/v) molasses was determined. Increased sucrose concentration had a similar detrimental effect on the final ethanol produced as the increase in molasses concentration. This indicated that the effect may be due to increased osmotic activity as opposed to other components in the molasses. The optimum concentration of the supplements nitrogen, magnesium, potassium and fatty acid for maximum ethanol production rate was determined using the Nelder and Mead (Computer J 7:308–313, 1965) simplex optimisation method. The optimum concentrations of the supplements were 0.576 g l-1 magnesium sulphate, 0.288 g l-1 potassium dihydrogen phosphate and 0.36% (v/v) linseed oil. Added nitrogen in the form of ammonium sulphate did not affect the ethanol production rate. Received: 29 January 1996/Received revision: 23 April 1996/Accepted: 29 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号