首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal levels of pulmonary eicosanoids have been reported in infants with persistent pulmonary hypertension (PPH) and congenital diaphragmatic hernia (CDH). We hypothesized that a dysbalance of vasoconstrictive and vasodilatory eicosanoids is involved in PPH in CDH patients. The levels of several eicosanoids in lung homogenates and in bronchoalveolar lavage fluid of controls and rats with CDH were measured after caesarean section or spontaneous birth. In controls the concentration of the stable metabolite of prostacyclin (6-keto-PGF(1alpha)), thromboxane A(2) (TxB(2)), prostaglandin E(2) (PGE(2)), and leukotriene B(4) (LTB(4)) decreased after spontaneous birth. CDH pups showed respiratory insufficiency directly after birth. Their lungs had higher levels of 6- keto-PGF(1alpha), reflecting the pulmonary vasodilator prostacyclin (PGI(2)), than those of controls. We conclude that in CDH abnormal lung eicosanoid levels are present perinatally. The elevated levels of 6-keto-PGF(1alpha) in CDH may reflect a compensation mechanism for increased vascular resistance.  相似文献   

2.
Urinary excretion of prostanoids prostaglandin E2 (PGE2), PGE-M (7alpha-hydroxy-5,11-diketo-2,3,4,5,20-penta-19-carboxyprostano ic acid), 6-keto-PGF1alpha, 2,3-dinor-6-keto-PGF1alpha, thromboxane B2 (TxB2) 2,3-dinor-TxB2 and 11-dehydro-TxB2 was determined by gas chromatography/mass spectrometry in preterm and term infants to show that there is an age-dependent excretion rate of the above prostanoids in infants this young. Group I included premature children with normal postnatal development, Groups II and III included term children who were admitted in the neonatal period for observation because of feeding problems but who were subsequently found to be completely healthy. We present normal data of three primary prostanoids and four prostanoid metabolites. In Group I, excretion rates of 2,3-dinor-TxB2 were significantly lower than in Group II (P = 0.04) and in Group III (P = 0.05). Furthermore, the excretion rate of 11-dehydro-TxB2 in group I was significantly lower than in Group II (P = 0.05). We found no significant age-dependent differences between the three groups in excretion rates of PGE2, PGE-M, 6-keto-PGF1alpha, 2,3-dinor-6-keto-PGF1alpha, and TxB2.  相似文献   

3.
Methods for the profiling of prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), 15(S),9 alpha,11 beta-trihydroxyprosta-5Z,13E-dien-1-oic acid (9 alpha,11 beta-PGF2), 6-keto-prostaglandin F1 alpha (6kPGF1 alpha), and thromboxane B2 (TxB2) in bronchoalveolar lavage (BAL) fluids from human subjects by combined capillary gas chromatography-mass spectrometry are described. Aliquots (5 ml) of BAL fluid obtained using a standardized lavage protocol were extracted on octadecylsilyl silica cartridges after addition of 0.8 to 2.0 nanograms of tetradeuterated analogs of PGE2, PGF2 alpha, and 6kPGF1 alpha as internal standards. Eluted analytes and internal standards were prepared for vapor phase analysis by sequential reactions resulting in the formation of methyloxime-pentafluorobenzyl ester-trimethylsilyl ether derivatives. The derivatized analytes were detected by simultaneous monitoring of ions at six different masses characteristic for each of the derivatized prostanoids. The samples were of adequate purity for identification and quantitation of each of the prostanoids with detection limits of 0.1 to 0.2 picograms of each analyte per milliliter of BAL fluid. The time required for analysis of each sample was approximately 30 minutes. Standard curves of unlabeled species of the six prostanoids extracted after addition to BAL fluid were linear over a range from subpicogram to nanogram quantities. The differences between the amounts of prostanoid added and the amounts of prostanoid measured were typically less than 19%, and the intra-assay coefficients of variation for repeated measurements of a single sample were less than 20%. PGE2, PGD2, PGF2 alpha, and TxB2 were detectable in BAL fluids from normal subjects with levels of each of these compounds being less than 2.6 picograms/ml. BAL fluids from patients with lung disease presented qualitative and quantitative profiles of prostanoids markedly different than those from normal subjects. These analytical methods provide a basis for in vivo comparisons of prostanoid profiles in the lower respiratory tract of man and should be readily adaptable for use in a variety of clinical studies.  相似文献   

4.
Simultaneous determination of urinary excretion rates of primary unmetabolized prostanoids and their enzymatic metabolites were performed by gas chromatography-mass spectrometry (GC/MS) or tandem mass spectrometry (GC/MS/MS). Changes in kidney function were induced by acute (4 h) volume expansion. Despite marked changes in urine flow, GFR, urinary pH, osmolality, sodium and potassium excretion, only a insignificant or transient rise in the enzymatic prostanoid metabolites (2,3-dinor-6-keto-PGF1 alpha, PGE-M, 2,3-dinor-TxB2 and 11-dehydro-TxB2) was observed. The excretion rates of the primary prostanoids were elevated in parallel with the rise in urine flow: PGE2 rose (p less than 0.05) from 14.2 +/- 4.0 to 86.2 +/- 20.7, PGF2 alpha from 60.0 +/- 4.9 to 119.8 +/- 24.0, 6-keto-PGF2 alpha from 7.2 +/- 1.3 to 51.5 +/- 17.0, and TxB2 from 11.2 +/- 3.3 to 13.6 +/- 3.6 ng/h/1.73 m2 (means +/- SEM) at the maximal urine flow. Except for 6-keto-PGF1 alpha and TxB2, this rise in urinary prostanoid levels was only transient despite a sustained fourfold elevated urine flow. We conclude that urine flow rate acutely affect urine prostanoid excretion rates, however, over a prolonged period of time these effects are not maintained. The present data support the concept that urinary levels of primary prostanoids mainly reflect renal concentrations whereas those of enzymatic metabolites reflect systemic prostanoid activity. From the excretion pattern of TxB2 one can assume that this prostanoid represents renal as well as systemic TxA2 activity.  相似文献   

5.
Systemic arterial and mixed venous plasma concentrations of 6-keto-PGF1 alpha and TxB2 were measured by radioimmunoassay in 63 critically ill patients with major trauma (n = 20) or sepsis (n = 43). Patients undergoing elective catheterization procedures served as controls (n = 10). Arterial and mixed venous 6-keto-PGF1 alpha and TxB2 levels were significantly elevated in patients with recent major trauma or active sepsis. The 6-keto-PGF1 alpha levels were found to be significantly elevated in the non-survivors and in patients with hepatic failure. The presence of severe pulmonary failure was not associated with increased levels of either 6-keto-PGF1 alpha or TxB2. Comparison of arterial and mixed plasma samples did not demonstrate increased pulmonary release of either compound. Increased eicosanoid production may account, in part, for the local vascular and humoral responses to tissue injury or infection.  相似文献   

6.
Short-term exposure to 0.5 parts per million (ppm) ozone has been shown to cause an increase in respiratory resistance in primates that can be diminished by 50% with pretreatment with cromolyn sodium. Because of the known membrane-stabilizing effects of cromolyn and the resultant inhibition of mediator production, we hypothesized a role for the products of arachidonic acid (AA) metabolism in these events. We exposed five adult male baboons to 0.5 ppm ozone on two occasions, once with cromolyn pretreatment and once without. Pulmonary resistance (RL) was monitored and bronchoalveolar lavage (BAL) was performed before and after each exposure. The BAL was analyzed for a stable hydrolysis product of prostacyclin, 6-keto-prostaglandin (PG) F1 alpha, PGE2, a stable hydrolysis product of thromboxane (Tx) A2, TxB2, and PGF2 alpha. RL increased after ozone exposure (1.62 +/- 0.23 to 3.77 +/- 0.51 cmH2O.l-1.s, difference 2.15; P less than 0.02), and this effect was partially blocked by cromolyn (1.93 +/- 0.09 to 3.18 +/- 0.40 cmH2O.l-1.s, difference 1.25; P less than 0.02). The base-line levels of the metabolites of AA in the BAL were as follows (in pg/ml): 6-keto-PGF1 alpha 72.78 +/- 12.6, PGE2 145.92 +/- 30.52, TxB2 52.52 +/- 9.56, and PGF2 alpha 22.28 +/- 5.42. Ozone exposure had no effect on the level of any of these prostanoids (P = NS). These studies quantify the magnitude of cyclooxygenase products of AA metabolism in BAL from baboon lungs and demonstrate that changes in the levels of these mediators in BAL are not prerequisites for ozone-induced increases in respiratory resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study addressed the possible role of cyclooxygenase (COX) and its products in the rebound response to inhaled nitric oxide (INO). Anesthetized, mechanically ventilated piglets were exposed to endotoxin alone, endotoxin combined with INO, or endotoxin with INO plus the COX inhibitor diclofenac (3 mg/kg iv) (n = 8 piglets/group). A control group of healthy pigs (n = 6) was also studied. Measurements were made of blood gases, hemodynamic parameters, lung tissue COX expression, and plasma concentrations of thromboxane B(2) (TxB(2)), PGF(2alpha), and 6-keto-PGF(1alpha). Endotoxin increased lung inducible COX (COX-2) expression and circulating prostanoids concentrations. Inhalation of NO during endotoxemia increased the constitutive COX (COX-1) expression, and the circulating TxB(2) and PGF(2alpha) increased further after INO withdrawal. The combination of COX inhibitor with INO blocked all these changes and eliminated the rebound reaction to INO withdrawal, which otherwise was seen in endotoxemic piglets given INO only. We conclude that the rebound response to INO discontinuation is related to COX products.  相似文献   

8.
Arachidonic acid metabolism can lead to synthesis of cyclooxygenase products in the lung as indicated by measurement of such products in the perfusate of isolated lungs perfused with a salt solution. However, a reduction in levels of cyclooxygenase products in the perfusate may not accurately reflect the inhibition of levels of such products as measured in lung parenchyma. We infused sodium arachidonate into the pulmonary circulation of isolated dog lungs perfused with a salt solution and measured parenchymal, as well as perfusate, levels of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), and thromboxane B2 (TxB2). These studies were repeated with indomethacin (a cyclooxygenase enzyme inhibitor) in the perfusate. We found that indomethacin leads to a marked reduction in perfusate levels of PGF2 alpha, PGE2, 6-keto-PGF1 alpha, and TxB2, as well as a marked reduction in parenchymal levels of 6-keto-PGF1 alpha and TxB2 when parenchymal levels of PGF2 alpha and PGE2 are not reduced. We conclude that, with some cyclooxygenase products, a reduction in levels of these products in the perfusate of isolated lungs may not indicate inhibition of levels of these products in the lung parenchyma and that a reduction in one parenchymal product may not predict the reduction of other parenchymal products. It can be speculated that some of the physiological actions of indomethacin in isolated lungs may result from incomplete or selective inhibition of synthesis of pulmonary cyclooxygenase products.  相似文献   

9.
We tested the effects of OKY-046, a thromboxane synthase inhibitor, on lung injury induced by 2 h of pulmonary air infusion (1.23 ml/min) in the pulmonary artery of unanesthetized sheep with chronic lung lymph fistula so as to assess the role of thromboxane A2 (TxA2) in the lung injury. We measured pulmonary hemodynamic parameters and the lung fluid balance. The concentrations of thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) in plasma and lung lymph were determined by radioimmunoassay. Air infusion caused sustained pulmonary hypertension and an increase in pulmonary vascular permeability. The levels of TxB2 and 6-keto-PGF1 alpha in both plasma and lung lymph were significantly elevated during the air infusion. TxB2 concentration in plasma obtained from the left atrium was higher than that from the pulmonary artery at 15 min of air infusion. When sheep were pretreated with OKY-046 (10 mg/kg iv) prior to the air infusion, increases in TxB2 were prevented. The pulmonary arterial pressure, however, increased similarly to that of untreated sheep (1.8 X base line). The increase in lung lymph flow was significantly suppressed during the air infusion. Our data suggest that the pulmonary hypertension observed during air embolism is not caused by TxA2.  相似文献   

10.
We investigated the effects of OKY-046, a potent and selective thromboxane A2 (TxA2) synthetase inhibitor, on anaphylactic bronchoconstriction and release of chemical mediators into airway lumen in sensitized guinea pigs in vivo. OKY-046 dose-dependently inhibited antigen-induced anaphylactic bronchoconstriction with or without mepyramine, a histamine H1 antagonist. In the presence of mepyramine, OKY-046 (300 mg/kg, p.o.) elicited significant reductions in histamine (1 min) and TxB2 increases (1-15 min) in bronchoalveolar lavage (BAL) fluid but significantly increased the plasma level of 6-keto-PGF1 alpha, a stable PGI2 metabolite, after antigen challenge. On the contrary, indomethacin only significantly reduced increases in TxB2 levels. These results suggest that the antiasthmatic effect of OKY-046 is probably due to inhibition of TxA2 synthesis and suppression of histamine release via a PGI2 shunting mechanism.  相似文献   

11.
We investigated the effects of a new pyridoquinazoline thromboxane synthetase inhibitor infused before administering Escherichia Coli endotoxin into 18 anesthetized sheep with lung lymph fistulas. In normal sheep increasing plasma Ro 23-3423 concentrations were associated with increased plasma levels of 6-keto-PGF1 alpha, a reduced systemic vascular resistance (SVR, r = -0.80) and systemic arterial pressure (SAP, r = -0.92), the mean SAP falling from 80 to 50 mm Hg at the 20 and 30 mg/kg doses. Endotoxin infused into normal sheep caused transient pulmonary vasoconstriction associated with increased TxB2 and 6-keto-PGF1 alpha levels while vasoconstriction and TxB2 increase were significantly inhibited by pretreatment with Ro 23-3423 in a dose-dependent manner. When compared to controls, plasma and lymph levels of 6-keto-PGF1 alpha, PGF2 alpha and PGE2 after endotoxin infusion were increased several-fold by administering Ro 23-3423 up to plasma levels of 10 micrograms/ml. Doses over 30 mg/kg with blood levels above 10 micrograms/ml reduced plasma and lymph levels of 6-keto-PGF1 alpha, PGF2 alpha and PGE2, suggesting cyclooxygenase blockade at this dose. The peak 6-keto-PGF1 alpha levels at 60 min after endotoxin infusion in sheep with Ro-23-3423 levels below 10 micrograms/ml were associated with the greatest systemic hypotension due to a reduced SVR (r = -0.86). After endotoxin infusion the leukotrienes B4, C4, D4 and E4 in lung lymph were assayed by radioimmunoassay and high pressure liquid chromatography and remained at baseline values.  相似文献   

12.
BACKGROUND: In smoking COPD patients the bronchoalveolar lavage (BAL) fluid contains high numbers of inflammatory cells. These cells might produce arachidonic acid (AA) metabolites, which contribute to inflammation and an increased bronchomotor tone. AIMS: To investigate levels of AA metabolites in BAL fluid, before and after inhaled glucocorticoid therapy: fluticasone propionate (FP) 1 mg per day, or placebo. METHODS: A double-blind placebo controlled trial lasting six months. COPD patients were selected by clinical criteria and the presence of bronchial hyper-responsiveness (BHR). Lung function was recorded and in BAL fluid we counted cell numbers and measured LTB4, LTC4/D4/E4, PGE2, 6kPGF1alpha, PGF2alpha and TxB2. A control group consisted of asymptomatic smokers (n=6). RESULTS: Paired data were obtained from 9 FP treated and 11 placebo patients. BAL cells were almost exclusively alveolar macrophages. In patients and controls both cellularity and levels of AA metabolites were equal Cell numbers did not change after treatment. Statistically significant decreases after FP therapy were noticed for PGE2 (30%), 6kPGF1alpha (41%) and PGF2alpha (54%). CONCLUSIONS: In COPD, the capability of inflammatory cells to produce certain AA metabolites was decreased after inhaled FP treatment. This result is discussed in its relation to clinical effects, the influence of smoking, and the results of an earlier, similar study in asthma patients.  相似文献   

13.
The purpose of this study was to determine the role of thromboxane and prostacyclin in modulating pulmonary hemodynamics during maximal cardiopulmonary stress in the healthy lung. We studied 11 yearling sheep in paired studies during progressive maximal treadmill exercise with and without meclofenamate (n = 5), ibuprofen (n = 6), or UK38485 (n = 2). We also studied five sheep during hypoxia and hypoxic exercise, and six sheep during prolonged steady-state treadmill exercise for 45-60 min with and without drug treatment. We measured the metabolites of thromboxane A2 (thromboxane B2, TxB2) and prostacyclin (6-ketoprostaglandin F1 alpha, 6-keto-PGF1 alpha) in blood plasma and lung lymph in each protocol. We found that progressive exercise significantly reduced pulmonary vascular resistance but that cyclooxygenase or thromboxane synthesis blockade did not alter the change. Plasma TxB2 rose minimally but significantly during maximal exercise, but 6-keto-PGF1 alpha did not change. During continuous hypoxia, exercise reduced pulmonary vascular resistance nearly to base-line levels, but the degree of reduction was also unchanged by drug treatment. There were also no significant changes in lymph or plasma TxB2 or 6-keto-PGF1 alpha during 45-60 min of continuous moderate exercise. We conclude that neither TxB2 nor prostacyclin modulate pulmonary hemodynamics in the normal lung during maximal exercise, prolonged moderate exercise, or exercise-induced reductions in vascular resistance during hypoxia.  相似文献   

14.
We have proposed that endogenous prostacyclin opposes the vasoconstriction responsible for redistribution of regional pulmonary blood flow (rPBF) away from areas of increased regional lung water concentration (rLWC) in canine oleic acid- (OA) induced acute lung injury (D. P. Schuster and J. Haller. J. Appl. Physiol. 69: 353-361, 1990). To test this hypothesis, we related regional lung tissue concentrations of 6-ketoprostaglandin (PG) F1 alpha and thromboxane (Tx) B2 in tissue samples obtained 2.5 h after administration of OA (0.08 ml/kg iv) to rPBF and rLWC measured by positron emission tomography. After OA only (n = 16), rLWC increased in dependent lung regions. Some animals responded to increased rLWC by redistribution of rPBF away from the most edematous regions (OA-R, n = 6), whereas others did not (OA-NR, n = 10). In another six animals, meclofenamate was administered after OA (OA-meclo). After OA, tissue concentrations of 6-keto-PGF1 alpha were greater than TxB2 in all groups, but concentrations of 6-keto-PGF1 alpha were not different between OA-R and OA-NR animals. TxB2 was increased in the dependent regions of animals in both OA-R and OA-NR groups compared with controls (no OA, n = 4, P < 0.05). The tissue TxB2/6-keto-PGF1 alpha ratio was smaller in controls and OA-NR in which no perfusion redistribution occurred than in OA-R and OA-meclo in which it did occur. This TxB2/6-keto-PGF1 alpha ratio correlated significantly with the magnitude of perfusion redistribution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To determine if acute exposure to ozone can cause changes in the production of cyclooxygenase metabolites of arachidonic acid (AA) in the lung which are associated with changes in lung mechanics, we exposed mongrel dogs to 0.5 ppm ozone for two hours. We measured pulmonary resistance (RL) and dynamic compliance (Cdyn) and obtained methacholine dose response curves and bronchoalveolar lavagate (BAL) before and after the exposures. We calculated the provocative dose of methacholine necessary to increase RL 50% (PD50) and analyzed the BAL for four cyclooxygenase metabolites of AA: a stable hydrolysis product of prostacyclin, 6-keto-prostaglandin F1 alpha (6-keto-PgF1 alpha); prostaglandin E2 (PgE2); a stable hydrolysis product of thromboxane A2, thromboxane B2 (TxB2); and prostaglandin F2 alpha (PgF2 alpha). Following ozone exposure, RL increased from 4.75 +/- 1.06 to 6.08 +/- 1.3 cm H2O/L/sec (SEM) (p less than 0.05), Cdyn decreased from 0.0348 +/- 0.0109 TO .0217 +/- .0101 L/cm H2O (p less than 0.05), and PD50 decreased from 4.32 +/- 2.41 to 0.81 +/- 0.49 mg/cc (p less than 0.05). The baseline metabolite levels were as follows: 6-keto PgF1 alpha: 96.1 +/- 28.8 pg/ml; PgE2: 395.8 +/- 67.1 pg/ml; TxB2: 48.5 +/- 11.1 pg/ml; PgF2 alpha: 101.5 +/- 22.6 pg/ml. Ozone had no effect on any of these prostanoids. These studies quantify the magnitude of cyclooxygenase products of AA metabolism in BAL from dog lungs and demonstrate that changes in their levels are not prerequisites for ozone-induced changes in lung mechanics or airway reactivity.  相似文献   

16.
The effect of hypoxia on isolated perfused rat mesenteric basal venous prostanoid output was studied. Male rat splanchnic vasculature was removed without (SV) or with its end organ (SV + SI) and perfused with Krebs' buffer with a pO2 of 460 or 60 mm torr. Basal splanchnic venous effluent was assayed for 6-keto-PGF1 alpha, TxB2 and PGE by radioimmunoassay at 30, 60, 120 and 180 min of perfusion. Basal output of SV 6-keto-PGF1 alpha was five and ten fold higher than for PGE and TxB2 respectively and comprised 36% or greater of SV + SI 6-keto-PGF1 alpha output. SV PGE and TxB2 output comprised less than 19 and 12% respectively of SV + SI output. Hypoxia decreased SV + SI PG output, 6-keto-PGF1 alpha being most affected. Hypoxia did not alter SV 6-keto-PGF1 alpha output indicating the SI as the anatomic location most influenced by hypoxia. The relative amounts of distribution of PGE or TxB2 output were not altered by hypoxia. These data suggest that there are two distinct areas of splanchnic prostanoid output, the SV and the SI. Decreased 6-keto-PGF1 alpha output might alter splanchnic blood flow at two levels, the splanchnic vasculature, and/or within the bowel wall.  相似文献   

17.
THE acyl carrier coenzyme A (CoA) is involved in fatty acid metabolism. The carnitine/CoA ratio is of particular importance in regulating the transport of long-chain fatty acids into mitochondria for oxidation. Also CoA has a role in the formation and breakdown of products from both the cyclooxygenase and lipoxygenase pathways of the precursor arachidonic acid. In the present study the effect of 4 days feeding of 300 mg/kg/day of L-carnitine, acetyl Lcarnitine and propionyl L-carnitine on the basal and calcium ionophore (A23187) stimulated release of arachidonic acid metabolites from rat carrageenin elicited peritoneal cells was investigated. There were two series of experiments carried out. In the first, the harvested peritoneal cell population consisted of less than 90% macrophages and additional polymorphonuclear (PMN) leucocytes. The basal release of prostaglandin E(2) (PGE(2)), 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) and leukotriene B(4) (LTB(4)) was stimulated by all treatments. The A23187 stimulated release of 6-keto-PGF(1alpha) and LTB(4) was increased by all three compounds. The 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) ratios were increased by carnitine treatment. These results suggested that carnitine could modify the macrophage component of an inflammatory site in vivo. In the second series of experiments the harvested cell population was highly purified (>95% macrophages) and none of the compounds fed to the rats caused a change of either eicosanoid or TNFalpha formation. Moreover the 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) ratios were not enhanced by any of the compounds tested. It is conceivable that in the first series the increased ratios 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) reflected the effect of carnitine or its congeners on PMN leucocytes rather than on macrophages.  相似文献   

18.
Formation of prostanoids in human umbilical vessels perfused in vitro   总被引:1,自引:0,他引:1  
Four major prostanoids (6-keto-PGF1 alpha, PGE2, PGF2 alpha and TXB2) were measured by specific radioimmunoassays in the outputs from human umbilical vessels perfused in vitro. As evaluated by scanning electron microscopy (SEM) only few blood platelets were attached to the vessel wall. After an initial flush with decreasing concentrations of all four prostanoids, a stable stage was reached, lasting for 4-5 hours. During this stage the production could be inhibited by indomethacin and only slightly stimulated with arachidonic acid. The TXA2 synthetase inhibitor UK 38485 depressed the TXB2 production, while only slightly affecting the other three prostanoids at very high concentrations. The arteries produced relatively more 6-keto-PGF1 alpha than did the vein.  相似文献   

19.
In 10 patients admitted to hospital with diabetic ketoacidosis plasma prostanoids 6-keto-PGF alpha, thromboxane B2 and PGE2 were studied before treatment and following recovery. During ketoacidosis the median plasma 6-keto-PGF1 alpha and PGE2 were significantly increased compared to those of a normal reference group: 5.2 pg/ml and 3.9 pg/ml versus 1.7 pg/ml and 0.4 pg/ml (p less than 0.01 and p less than 0.05). In response to therapy both prostanoids decreased significantly towards a normal level, 6-keto-PGF1 alpha: 0.5 pg/ml p less than 0.01 and PGE2: 0.08 p less than 0.05 respectively. The changes in plasma 6-keto-PGF1 alpha were negatively correlated to changes in pH, rho: -0.7788 p = 0.0135, whereas the changes in PGE2 were positively correlated to serum creatinine at admittance, rho: 0.6976, p = 0.0368 and to the amount of intravenous fluid and insulin used during treatment, rho: 0.7500 p = 0.0126 and rho: 0.8424, p = 0.0023 respectively. Plasma thromboxane B2 concentrations were not elevated and did not change after treatment of the ketoacidosis.  相似文献   

20.
Concentrations of thromboxane (Tx) B2 in plasma and its production by platelets were measured in 20 spinal and 10 epidural anesthesia patients scheduled for small operations in the lower extremities. The main metabolite of prostacyclin, 6-keto-PGF1 alpha and prostaglandin (PG) E2 in plasma were also determined. Plasma TxB2 and TxB2 production by platelets increased during both spinal and epidural anesthesia. Plasma TxB2 levels also remained elevated 1 h after anesthesia. The plasma concentrations of 6-keto-PGF1 alpha and PGE2 did not change during spinal or epidural anesthesia. In in vitro studies, only low concentrations of lidocaine (0.5-1.0 micrograms/ml) and bupivacaine (0.5-3.0 micrograms/ml) increased platelet TxB2 production. In platelet rich plasma, neither lidocaine nor bupivacaine in concentrations of 0.5-3.0 micrograms/ml caused constant changes in ADP-induced platelet aggregation, but they inhibited it in toxic concentrations (12 micrograms/ml). The results suggest that the increased TxB2 plasma levels and platelet TxB2 production during regional anesthesia are not caused by local anesthetics itself but by other factors, e.g. tissue trauma. In clinically found concentrations, local anesthetics do not cause any constant changes in platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号