首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The determination of the vertebrate dorsoventral body axis is regulated in the extracellular space by a system of interacting secreted molecules consisting of BMP, Chordin, Tolloid and Twisted Gastrulation (Tsg). Tsg is a BMP-binding protein that forms ternary complexes with BMP and Chordin. We investigated the function of Tsg in embryonic patterning by generating point mutations in its two conserved cysteine-rich domains. Surprisingly, Tsg proteins with mutations in the N-terminal domain were unable to bind BMP, yet ventralized the embryo very effectively, indicating strong pro-BMP activity. This hyperventralizing Tsg activity required an intact C-terminal domain and could block the anti-BMP activity of isolated BMP-binding modules of Chordin (CRs) in embryonic assays. This activity was specific for CR-containing proteins as it did not affect the dorsalizing effects of Noggin or dominant-negative BMP receptor. The ventralizing effects of the xTsg mutants were stronger than the effect of Chordin loss-of-function in Xenopus or zebrafish. The results suggest that xTsg interacts with additional CR-containing proteins that regulate dorsoventral development in embryos.  相似文献   

3.
4.
A highly conserved TGF-&bgr; signaling pathway is involved in the establishment of the dorsoventral axis of the vertebrate embryo. Specifically, Bone Morphogenetic Proteins (Bmps) pattern ventral tissues of the embryo while inhibitors of Bmps, such as Chordin, Noggin and Follistatin, are implicated in dorsal mesodermal and neural development. We investigated the role of Tolloid, a metalloprotease that can cleave Chordin and increase Bmp activity, in patterning the dorsoventral axis of the zebrafish embryo. Injection of tolloid mRNA into six dorsalized mutants rescued only one of these mutants, mini fin. Through chromosomal mapping, linkage and cDNA sequence analysis of several mini fin alleles, we demonstrate that mini fin encodes the tolloid gene. Characterization of the mini fin mutant phenotype reveals that Mini fin/Tolloid activity is required for patterning ventral tissues of the tail: the ventral fin, and the ventroposterior somites and vasculature. Gene expression studies show that mfn mutants exhibit reduced expression of ventrally restricted markers at the end of gastrulation, suggesting that the loss of ventral tail tissues is caused by a dorsalization occurring at the end of gastrulation. Based on the mini fin mutant phenotype and the expression of tolloid, we propose that Mini fin/Tolloid modifes the Bmp activity gradient at the end of gastrulation, when the ventralmost marginal cells of the embryo are in close proximity to the dorsal Chordin-expressing cells. At this time, unimpeded Chordin may diffuse to the most ventral marginal regions and inhibit high Bmp activity levels. In the presence of Mini fin/Tolloid, however, Chordin activity would be negatively modulated through proteolytic cleavage, thereby increasing Bmp signaling activity. This extracellular mechanism is amplified by an autoregulatory loop for bmp gene expression.  相似文献   

5.
The dorsal-ventral axis of vertebrate embryos is thought to be specified by a gradient of bone morphogenetic protein (BMP) activity, which, in part, arises through the interaction of dorsally expressed antagonists Chordin and Noggin with the ventralizing BMPs. The zebrafish mercedes(tm305), ogon(m60), and short tail(b180) mutations produce ventralized phenotypes, including expanded bmp2b/4 expression domains. We find that the three mutations are allelic and that the locus they define, renamed ogon (ogo), maps to linkage group 25. The ogo(m60) and ogo(b180) mutations are deficiencies and thus represent null alleles, whereas the ENU-induced allele ogo(tm305) retains partial function. Aspects of the ogo(m60) and ogo(tm305) mutant phenotypes are fully suppressed by overexpression of BMP antagonists. Moreover, swirl(tc300), a null mutation in bmp2b, is epistatic to ogo(m60) mutation, providing further evidence that ogo normally functions in a BMP-dependent manner. Embryonic patterning is highly sensitive to maternal and zygotic ogo gene dosage, especially when the level of zygotic chordin activity is also reduced. However, elimination of the zygotic activity of both genes does not result in a completely ventralized embryo. Thus, while ogo and chordin are required to limit activity of BMPs, additional mechanisms must exist to block these ventralizing signals. We have ruled out zebrafish noggin homologues as candidates for the ogo gene, including a newly identified gene, nog1, which is specifically expressed in the gastrula organizer. The results suggest that ogo encodes an as yet unidentified dorsalizing factor that mediates dorsoventral patterning by directly or indirectly antagonizing BMP activity.  相似文献   

6.
Noggin is a neural inducer secreted by cells of the Spemann organizer. A single noggin gene was identified until very recently in all tested vertebrates. The only exception was zebrafish, in which two close homologs of noggin, named noggin1 and noggin3, and one gene more diverged from them, noggin2, were cloned. Nevertheless, finding of three zebrafish noggins was attributed exclusively to specific genomic duplications in the fish evolutionary branch. However, very recently it was shown that Xenopus tropicalis have additional noggin homolog, called noggin2 [Fletcher, R.B., Watson, A.L., Harland, R.M. (2004). Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr. Patterns 5, 225-230], which indicates at least two independent noggin genes in vertebrate phylum. Now we report identification of two novel noggin homologs in each of so evolutionary distant species as Xenopus laevis, chicken and fugu. One of these noggins is ortholog of the X. tropicalis and zebrafish noggin2, whereas another, named noggin4, was not known previously. In the X. laevis embryos, the expression of noggin2 very resembles that of its counterpart in X. tropicalis: it begins with neurulation at the anterior margin of the neural plate and, afterward, continues mainly in the forebrain and dorsal hindbrain. At the same time, noggin4 is expressed starting from the beginning of gastrulation, throughout the ectoderm, with a local expression maximum in the prospective anterior neurectoderm. Later, it is widely expressed on the dorsal side of embryo, including neural tube, eyes, otic vesicles, cranial placodes, branchial arches, and somites. The data presented here demonstrate that the vertebrate phylum contains at least three distinct noggin genes.  相似文献   

7.
Noggin proteins are important regulators of the early development of the vertebrate neural system. Previously, it has been traditionally thought that vertebrates have only one noggin gene (Noggin1), whose main function is the inhibition of BMP signaling pathway during the formation of dorsoventral polarity in embryos. Then other proteins of this family were discovered, and the studies of Noggin2 protein showed that noggin proteins also participate in the modulation of Nodal/Activin and Wnt/beta-catenin signaling pathways in the early development of amphibian head structures. The purpose of this study is to investigate the properties of another noggin protein, Noggin4. We proved that Noggin4 plays an important role in the formation of head structure in clawed frog, since it inhibits the activity of Wnt/beta-catenin signaling pathway. At the same time, unlike Noggin1 and Noggin2, Noggin4 does not inhibit the activity of TGF-beta signaling pathways (BMP and Nodal/Activin).  相似文献   

8.
Noggin genes are mainly known as inhibitors of the Bone Morphogenetic Protein (BMP) signalling pathway. Noggin genes play an important role in various developmental processes such as axis formation and neural differentiation. In vertebrates, inhibition of the BMP pathway is usually carried out together with other inhibitory molecules: chordin and follistatin. Recently, it has been shown in planarians that the BMP pathway has a conserved function in the maintenance and re-establishment of the dorsoventral axis during homeostasis and regeneration. In an attempt to further characterize the BMP pathway in this model we have undertaken an in silico search of noggin genes in the genome of Schmidtea mediterranea. In contrast to other systems in which between one and four noggin genes have been reported, ten genes containing a noggin domain are present in S. mediterranea. These genes have been classified into two groups: noggin genes (two genes) and noggin-like genes (eight genes). Noggin-like genes are characterized by the presence of an insertion of 50–60 amino acids in the middle of the noggin domain. Here, we report the characterization of this expanded family of noggin genes in planarians as well as their expression patterns in both intact and regenerating animals. In situ hybridizations show that planarian noggin genes are expressed in a variety of cell types located in different regions of the planarian body.  相似文献   

9.
The genetic network controlling early dorsal-ventral (DV) patterning has been extensively studied and modeled in the fruit fly Drosophila. This patterning is driven by signals coming from bone morphogenetic proteins (BMPs), and regulated by interactions of BMPs with secreted factors such as the antagonist short gastrulation (Sog). Experimental studies suggest that the DV patterning of vertebrates is controlled by a similar network of BMPs and antagonists (such as Chordin, a homologue of Sog), but differences exist in how the two systems are organized, and a quantitative comparison of pattern formation in them has not been made. Here, we develop a computational model in three dimensions of the zebrafish embryo and use it to study molecular interactions in the formation of BMP morphogen gradients in early DV patterning. Simulation results are presented on the dynamics BMP gradient formation, the cooperative action of two feedback loops from BMP signaling to BMP and Chordin synthesis, and pattern sensitivity with respect to BMP and Chordin dosage. Computational analysis shows that, unlike the case in Drosophila, synergy of the two feedback loops in the zygotic control of BMP and Chordin expression, along with early initiation of localized Chordin expression, is critical for establishment and maintenance of a stable and appropriate BMP gradient in the zebrafish embryo.  相似文献   

10.
11.
Questions of dorsoventral axis determination and patterning in Xenopus seek to uncover the mechanisms by which particular mesodermal fates, for example somite, are specified in the dorsal pole of the axis while other mesoderm fates, for example, ventral blood island (VBI), are specified at the ventral pole. We report here that the genes Xvent-1, Xvent-2, and Xwnt-8 do not appear to be in the pathway of VBI induction, contrary to previous reports. Results from the selective inhibition of bone morphogenetic protein (BMP) activity, a key regulator of VBI induction, by ectopic Noggin, Chordin, or dominant negative BMP ligands and receptors suggest an alternative route of VBI induction. Injection of noggin or chordin RNA into animal pole blastomeres effectively inhibited VBI development, while marginal zone injection had no effect. Cell autonomous inhibition of BMP activity in epidermis with dominant negative ligand dramatically reduced the amount of (&agr;)T3 globin expression. These results indicate that signaling activity from the Spemann Organizer alone may not be sufficient for dorsoventral patterning in the marginal zone and that an inductive interaction between presumptive VBIs and ectoderm late in gastrulation may be crucial. In agreement with these observations, other results show that in explanted blastula-stage marginal zones a distinct pattern develops with a restricted VBI-forming region at the vegetal pole that is independent of the patterning activity of the Spemann Organizer.  相似文献   

12.
Recent molecular genetic analyses of Drosophila melanogaster and mouse central nervous system (CNS) development revealed strikingly similar genetic patterning mechanisms in the formation of the insect and vertebrate brain. Thus, in both insects and vertebrates, the correct regionalization and neuronal identity of the anterior brain anlage is controlled by the cephalic gap genes otd/Otx and ems/Emx, whereas members of the Hox genes are involved in patterning of the posterior brain. A third intermediate domain on the anteroposterior axis of the vertebrate and insect brain is characterized by the expression of the Pax2/5/8 orthologues, suggesting that the tripartite ground plans of the protostome and deuterostome brains share a common evolutionary origin. Furthermore, cross-phylum rescue experiments demonstrate that insect and mammalian members of the otd/Otx and ems/Emx gene families can functionally replace each other in embryonic brain patterning. Homologous genes involved in dorsoventral regionalization of the CNS in vertebrates and insects show remarkably similar patterning and orientation with respect to the neurogenic region (ventral in insects and dorsal in vertebrates). This supports the notion that a dorsoventral body axis inversion occurred after the separation of protostome and deuterostome lineages in evolution. Taken together, these findings demonstrate conserved genetic patterning mechanisms in insect and vertebrate brain development and suggest a monophyletic origin of the brain in protostome and deuterostome bilaterians.  相似文献   

13.
In vertebrates, the embryonic dorsoventral asymmetry is regulated by the bone morphogenetic proteins (Bmp) activity gradient. In the present study, we have used dorsalized swirl (bmp2b) and ventralized chordino (chordin) zebrafish mutants to investigate the effects of dorsoventral signalling on endoderm patterning and on the differentiation and positioning of its derivatives. Alterations of dorsoventral Bmp signalling do not perturb the induction of endodermal precursors, as shown by normal amounts of cells expressing cas and sox17 in swirl and chordino gastrulae, but affect dramatically the expression pattern of her5, a regulator of endoderm anteroposterior patterning in zebrafish. In particular, increased levels of Bmp signalling in chordino gastrulae are associated with a markedly reduced her5 expression domain, that may be abolished by injecting bmp2b mRNA. Conversely, in swirl mutants, lacking Bmp2b, the her5 expression domain is expanded. Thus, a gradient of Bmp2b signalling defines the extension of the her5 expression domain at gastrulation and the allocation of anterior endodermal precursors. A balanced Bmp2b signalling is also required for the normal development of the pancreas, as shown by the sharp reduction of the pancreatic primordium in swirl embryos and its expansion in chordino mutants. In the latter, at 3 days post-fertilization, the increased Bmp signalling does not compromise the endocrine/exocrine pancreas compartmentalization, but the right/left positioning of the pancreas and liver is randomized. Our results suggest that by regulating the expression of her5, the Bmp2b/Chordin gradient directs the anteroposterior patterning of endoderm in zebrafish embryos.  相似文献   

14.
15.
In vertebrates, a bone morphogenetic protein (BMP) signaling pathway patterns all ventral cell fates along the embryonic axis. BMP activity is positively regulated by Tolloid, a metalloprotease, that can eliminate the activity of the BMP antagonist Chordin. A tolloid mutant in zebrafish, mini fin (mfn), exhibits a specific loss of ventral tail tissues. Here, we investigate the spatial and temporal requirements for Tolloid (Mfn) in dorsoventral patterning of the tail. Through chimeric analyses, we found that Tolloid (Mfn) functions cell non-autonomously in the ventral-most vegetal cells of the gastrula or their derivatives. We generated a tolloid transgene under the control of the inducible hsp70 promoter and demonstrate that tolloid (mfn) is first required at the completion of gastrulation. Although tolloid is expressed during gastrulation and dorsally and ventrally within the tail bud, our results indicate that Tolloid (Mfn) acts specifically in the ventral tail bud during a approximately 4 h period extending from the completion of gastrulation to early somitogenesis stages to regulate BMP signaling. Examination of the temporal requirements of Chordin activity by overexpression of the hsp70-tolloid transgene indicates that Chordin is required both during and after gastrulation for proper patterning of the tail, contrasting Tld's requirement only during post-gastrula stages. We hypothesize that the gastrula role of Chordin in tail patterning is to generate the proper size domains of cells to enter the ventral and dorsal tail bud, whereas post-gastrula Chordin activity patterns the derivatives of the tail bud. Thus, fine modulation of BMP signaling levels through the negative and positive actions of Chordin and Tolloid, respectively, patterns tail tissues.  相似文献   

16.
Noggin is an extracellular cysteine knot protein that plays a crucial role in vertebrate dorsoventral patterning. Noggin binds and inhibits the activity of bone morphogenetic proteins via a conserved N-terminal clip domain. Noncanonical orthologs of Noggin that lack a clip domain (“Noggin-like” proteins) are encoded in many arthropod genomes and are thought to have evolved into receptor tyrosine kinase ligands that promote Torso/receptor tyrosine kinase signaling rather than inhibiting bone morphogenic protein signaling. Here, we examined the molecular function of noggin/noggin-like genes (ApNL1 and ApNL2) from the arthropod pea aphid using the dorso-ventral patterning of Xenopus and the terminal patterning system of Drosophila to identify whether these proteins function as bone morphogenic protein or receptor tyrosine kinase signaling regulators. Our findings reveal that ApNL1 from the pea aphid can regulate both bone morphogenic protein and receptor tyrosine kinase signaling pathways, and unexpectedly, that the clip domain is not essential for its antagonism of bone morphogenic protein signaling. Our findings indicate that ancestral noggin/noggin-like genes were multifunctional regulators of signaling that have specialized to regulate multiple cell signaling pathways during the evolution of animals.  相似文献   

17.
Signaling by bone morphogenetic proteins (Bmps) plays a pivotal role in developmental and pathological processes, and is regulated by a complex interplay with secreted Bmp binding factors, including Crossveinless 2 (Cvl2). Although structurally related to the Bmp antagonist Chordin, Crossveinless 2 has been described to be both a Bmp agonist and antagonist. Here, we present the first loss-of-function study of a vertebrate cvl2 homologue, showing that zebrafish cvl2 is required in a positive feedback loop to promote Bmp signaling during embryonic dorsoventral patterning. In vivo, Cvl2 protein undergoes proteolytic cleavage and this cleavage converts Cvl2 from an anti- to a pro-Bmp factor. Embryonic epistasis analyses and protein interaction assays indicate that the pro-Bmp function of Cvl2 is partly accomplished by competing with Chordin for binding to Bmps. Studies in cell culture and embryos further suggest that the anti-Bmp effect of uncleaved Cvl2 is due to its association with the extracellular matrix, which is not found for cleaved Cvl2. Our data identify Cvl2 as an essential pro-Bmp factor during zebrafish embryogenesis, emphasizing the functional diversity of Bmp binding CR-domain proteins. Differential proteolytic processing as a mode of regulation might account for anti-Bmp effects in other contexts.  相似文献   

18.
In vertebrates and invertebrates, the bone morphogenetic protein (BMP) signaling pathway patterns cell fates along the dorsoventral (DV) axis. In vertebrates, BMP signaling specifies ventral cell fates, whereas restriction of BMP signaling by extracellular antagonists allows specification of dorsal fates. In misexpression assays, the conserved extracellular factor Twisted gastrulation (Tsg) is reported to both promote and antagonize BMP signaling in DV patterning. To investigate the role of endogenous Tsg in early DV patterning, we performed morpholino (MO)-based knockdown studies of Tsg1 in zebrafish. We found that loss of tsg1 results in a moderately strong dorsalization of the embryonic axis, suggesting that Tsg1 promotes ventral fates. Knockdown of tsg1 combined with loss of function of the BMP agonist tolloid (mini fin) or heterozygosity for the ligand bmp2b (swirl) enhanced dorsalization, supporting a role for Tsg1 in specifying ventral cell fates as a BMP signaling agonist. Moreover, loss of tsg1 partially suppressed the ventralized phenotypes of mutants of the BMP antagonists Chordin or Sizzled (Ogon). Our results support a model in which zebrafish Tsg1 promotes BMP signaling, and thus ventral cell fates, during DV axial patterning.  相似文献   

19.
We report the identification of two distinct noggin genes in the tetrapod Xenopus tropicalis. Noggin functions to antagonize BMP signaling in many developmental contexts, and much work has explored its role in early vertebrate development. We have identified two noggin genes in the tropical clawed frog, X. tropicalis, a diploid anuran which is being explored for its potential as a genetic model system for early vertebrate development. Here we report the cloning and characterization of the Xenopus tropicalis noggin1 and noggin2 genes, which have distinct expression domains in the early embryo with one overlapping domain in the anterior neural tissue. X. tropicalis noggin1 expression is very similar to that of noggin in Xenopus laevis, with expression beginning in the blastula organizer region and continuing through gastrulation and neurulation in the organizer and notochord. Later, it is also expressed in the anterior neural ridge and subsequent forebrain; noggin1 is also expressed in the pharyngeal arches after neural tube closure. At the tadpole stage expression is maintained in the dorsal neural tube and is present in the otic vesicle. However, the expression of noggin2 is much more similar to the expression of noggin2 in D. rerio with expression in the forebrain, hindbrain, and somites, but unlike D. rerio, X. tropicalis noggin2 is expressed in the heart by stage 28. This work presents the first example of a tetrapod with at least two noggin genes.  相似文献   

20.
Vertebrates share common mechanisms in the control of development and in the maintenance of neural and retinal function. The secreted factor Noggin, a BMP inhibitor, plays a crucial role in neural induction during embryonic development. Moreover, we have shown its involvement in retinal differentiation of pluripotent cells. Here we show Noggin expression in the adult retina in three vertebrate species. Four Noggin genes are present in zebrafish (Danio rerio; ZbNog1, 2, 3, 5), three in frog (Xenopus laevis; XenNog1, 2 and 4), and one in mouse (Mus musculus; mNog). Quantitative RT-PCR experiments show the presence of ZbNog3 and ZbNog5 mRNAs, but not ZbNog1 and ZbNog2, in the adult zebrafish retina. All three genes are expressed in the frog retina, and mNog in the mouse. Immunohistochemistry data show that Noggin proteins are predominantly localized in the Golgi apparatus of photoreceptors and in the fibers of the outer plexiform layer. Lower expression levels are also found in inner plexiform layer fibers, in ganglion cells, in the ciliary marginal zone, and in retinal pigmented epithelium. Our results show that Noggin has a specific cellular and sub-cellular expression in the adult vertebrate retina, which is conserved during evolution. In addition to its established role during embryonic development, we postulate that Noggin also exerts a functional role in the adult retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号