首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-region of Ti plasmids expresses two genes (No. 1 and 2) in crown-gall cells which are essential for auxin effects. It has been shown that gene 2 (=IaaH) codes for an amidohydrolase which converts indole-3-acetamide into indole-3-acetic acid and which is functional in bacteria and in crown-gall cells (Schröder et al. (1984), Eur. J. Biochem. 138, 387–391). In this report we describe a quantitative assay for the enzyme and its application to analyze the properties of the enzyme as expressed in plant cells and in Escherichia coli. The enzyme requires no cofactors, and the temperature optimum (30–37°C), pH optimum (8.5–9.5), and Km (about 1 M) were very similar in both systems. Besides indole-3-acetamide, the enzyme also hydrolyzed indole-3-acetonitrile, esters of indole-3-acetic acid with glucose and myo-inositol, a-naphthaleneacetamide, and phenylacetamide, indicating that it may have a general function in converting substances of low auxin activity into those with high auxin activity. The results are discussed in relation to the possible function of T-DNA gene 1 which cooperates with gene 2 in evoking auxin effects in crown-gall cells.Abbreviations HPLC high-pressure liquid chromatography - T-DNA transferred DNA  相似文献   

2.
Folate metabolism is necessary for the biosyntheses of purine nucleotides and thymidylate and for the synthesis of S-adenosylmethionine, a cofactor required for cellular methylation reactions and a precursor of spermidine and spermine syntheses. Disruption of folate metabolism is associated with several pathologies and developmental anomalies including cancer and neural tube defects. The enzyme 5,10-methenyltetrahydrofolate synthetase (MTHFS, EC 6.3.3.2) catalyzes the ATP-dependent conversion of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate, and has been shown to affect intracellular folate concentrations by accelerating folate degradation. Mammalian MTHFS proteins described to date are not stable and no recombinant mammalian MTHFS protein has been successfully expressed in Escherichia coli. The three-dimensional structure of MTHFS has not been solved. The cDNA coding for Mus musculus MTHFS was isolated and expressed in E. coli with a hexa-histidine tag. Milligram quantities of recombinant mouse MTHFS were purified using metal affinity chromatography and the protein was stabilized with Tween 20. Mouse MTHFS has a molecular mass of 23 kDa and is 84% identical in amino acid sequence to the human enzyme. Activity assays confirmed the functionality of the recombinant protein, with Km=5 μM for (6S)-5-formyltetrahydrofolate and Km=769 μM for Mg–ATP. This is the first example of a mammalian form of MTHFS expressed in E. coli that yielded sufficient quantities of stable purified protein to allow for detailed characterization of its three-dimensional structure and kinetic properties.  相似文献   

3.
The nitrile hydratase (NHase, EC 4.2.1.84) genes (α and β subunit) and the corresponding activator gene from Rhodococcus equi TG328-2 were cloned and sequenced. This Fe-type NHase consists of 209 amino acids (α subunit, Mr 23 kDa) and 218 amino acids (β subunit, Mr 24 kDa) and the NHase activator of 413 amino acids (Mr 46 kDa). Various combinations of promoter, NHase and activator genes were constructed to produce active NHase enzyme recombinantly in E. coli. The maximum enzyme activity (844 U/mg crude cell extract towards methacrylonitrile) was achieved when the NHase activator gene was separately co-expressed with the NHase subunit genes in E. coli BL21 (DE3). The overproduced enzyme was purified with 61% yield after French press, His-tag affinity chromatography, ultrafiltration and lyophilization and showed typical Fe-type NHase characteristics: besides aromatic and heterocyclic nitriles, aliphatic ones were hydrated preferentially. The purified enzyme had a specific activity of 6,290 U/mg towards methacrylonitrile. Enantioselectivity was observed for aromatic compounds only with E values ranging 5–17. The enzyme displayed a broad pH optimum from 6 to 8.5, was most active at 30°C and showed the highest stability at 4°C in thermal inactivation studies between 4°C and 50°C.  相似文献   

4.
Matrix metalloproteinases belong to the superfamily of metzincins containing, besides a similar topology and a strictly conserved zinc environment, a 1,4-tight turn with a strictly conserved methionine residue at position three (the so called Met-turn [Bode et al. (1993) FEBS 331, 134–140; Stöcker et al. (1995) Protein Sci. 4, 823–840]. The distal S–CH3 moiety of this methionine residue forms the hydrophobic basement of the three His residues liganding the catalytic zinc ion. To assess the importance of this methionine, we have expressed the catalytic domain of neutrophil collagenase (rHNC, residues Met80–Gly242) in the methionine auxotrophic Escherichia coli strain B834[DE3](hsd metB), with the two methionine residues replaced by Selenomethionine. Complete replacement was confirmed by amino acid analysis and electrospray mass spectrometry. The folded and purified enzyme retained its catalytic activity, but showed modifications which are reflected in changed kinetic parameters. The Met215SeMet substitution caused a decrease in conformational stability upon urea denaturation. The X-ray crystal structure of this Selenomethionine rHNC was virtually identical to that of the wild-type catalytic domain except for a very faint local disturbance around the sulfur-seleno substitution site.  相似文献   

5.
A 1.4-kb gene encoding the “small” sialidase isoenzyme ofClostridium perfringensA99, including its own promoter, was previously cloned in and expressed byEscherichia coliJM 101. Since all attempts to purify this enzyme to homogeneity were unsuccessful, a new strategy was developed. The structural gene was amplified by means of a PCR technique and inserted into the plasmid vector pQE-10, transferring a six-histidine affinity tag (His6) to the N-terminus of the protein. In order to minimize proteolytic degradation of the sialidase protein, the gene was subcloned into theEscherichia colistrain BL21(DE3)pLys S with reduced protease activity. The sialidase production was increased about 2.5-fold when compared with that of the original clone. The enzyme, released by lysozyme treatment of the bacterial cells, was purified by metal chelate chromatography on Ni–nitrilo-triacetic acid agarose to apparent homogeneity in SDS–PAGE. The 42-kDa protein was enriched 62-fold with a yield of 82% and a specific activity of 280 U mg−1. A total amount of 1 mg sialidase was obtained from 1 liter of bacterial culture. For future studies, including crystallization experiments, the histidine affinity tag was removed from the sialidase enzyme by aminopeptidase K. The sialidase was then separated from aminopeptidase K by ion-exchange chromatography, resulting in an overall yield of 83% and a specific activity of 305 U mg−1using 4-methylumbelliferyl-α- -N-acetylneuraminic acid under standard conditions. The two forms (with or without the histidine tag) of sialidase exhibited similar kinetic properties when compared to the wild-type enzyme.  相似文献   

6.
Park YJ  Yoon SJ  Lee HB 《Journal of bacteriology》2008,190(24):8086-8095
A novel thermostable arylesterase, a 35-kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 94°C and 7.0, respectively. The enzyme displayed remarkable thermostability: it retained 52% of its activity after 50 h of incubation at 90°C. In addition, the purified enzyme showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity besides showing an arylesterase activity toward aromatic esters: it exhibits not only carboxylesterase activity toward tributyrin and p-nitrophenyl esters containing unsubstituted fatty acids from butyrate (C4) to palmitate (C16), but also paraoxonase activity toward organophosphates such as p-nitrophenylphosphate, paraoxon, and methylparaoxon. The kcat/Km ratios of the enzyme for phenyl acetate and paraoxon, the two most preferable substrates among all tested, were 30.6 and 119.4 s−1·μM−1, respectively. The arylesterase gene consists of 918 bp corresponding to 306 amino acid residues. The deduced amino acid sequence shares 34% identity with that of arylesterase from Acinetobacter sp. strain ADP1. Furthermore, we successfully expressed active recombinant S. solfataricus arylesterase in Escherichia coli. Together, our results show that the enzyme is a serine esterase belonging to the A-esterases and contains a catalytic triad composed of Ser156, Asp251, and His281 in the active site.  相似文献   

7.
Eicosanoids are a group of oxygenated fatty acid derivatives formed from C20 polyunsaturated fatty acids, including arachidonic and eicosapentaenoic acids. The potential of the coelomocytes of the starfish, Asterias rubens, to generate eicosanoids through the cyclooxygenase (COX) and lipoxygenase (LOX) pathways was investigated using reverse-phase high performance liquid chromatography, enzyme immunoassay and gas chromatography–mass spectrometry. The principal LOX product was identified as 8-hydroxyeicosatetraenoic acid (8-HETE) with 8-hydroxyeicosapentaenoic acid (8-HEPE) synthesised at significantly lower levels. No classical prostaglandins (PG), such as PGE2 or PGD2, were found to be generated by ionophore-challenged coelomocytes. Incubation of coelomocytes with lipopolysaccharides from either Escherichia coli or Salmonella abortus failed to induce an increase in generation of LOX products and the presence of 8-HETE (0–25 μM) had no significant effect on the in vitro phagocytic activity of Asterias coelomocytes. Neither indomethacin (a COX inhibitor) or esculetin (a LOX inhibitor) had any effect on the clearance of the bacterium, Vibrio splendidus, from the coelomic cavity of starfish suggesting that products of these enzymes are not involved in such coelomocyte responses to foreign particles.  相似文献   

8.
We found that the structural gene for monoamine oxidase was located at 30.9 min on the Escherichia coli chromosome. Deletion analysis showed that two amine oxidase genes are located in this region. The nucleotide sequence of one of the two genes was determined. The peptide sequence of the first 40 amino acids from the N terminus of monoamine oxidase purified from E. coli agrees with that deduced from the nucleotide sequence of the gene. The leader peptide extends over 30 amino acids. The nucleotide sequence of the gene and amino acid sequence of the predicted mature enzyme (M.W. 81,295) were highly homologous to those of the maoAK gene and monoamine oxidase from Klebsiella aerogenes, respectively. From these results and analysis of the enzyme activity, we concluded that the gene encodes for monoamine oxidase (maoAE). The tyrosyl residue, which may be converted to topa quinone in the E. coli enzyme, was located by comparison with amino acid sequences at the cofactor sites in other copper/topa quinone-containing amine oxidases.  相似文献   

9.
Phenol hydroxylase that catalyzes the conversion of phenol to catechol in Rhodococcus erythropolis UPV-1 was identified as a two-component flavin-dependent monooxygenase. The two proteins are encoded by the genes pheA1 and pheA2, located very closely in the genome. The sequenced pheA1 gene was composed of 1,629 bp encoding a protein of 542 amino acids, whereas the pheA2 gene consisted of 570 bp encoding a protein of 189 amino acids. The deduced amino acid sequences of both genes showed high homology with several two-component aromatic hydroxylases. The genes were cloned separately in cells of Escherichia coli M15 as hexahistidine-tagged proteins, and the recombinant proteins His6PheA1 and His6PheA2 were purified and its catalytic activity characterized. His6PheA1 exists as a homotetramer of four identical subunits of 62 kDa that has no phenol hydroxylase activity on its own. His6PheA2 is a homodimeric flavin reductase, consisting of two identical subunits of 22 kDa, that uses NAD(P)H in order to reduce flavin adenine dinucleotide (FAD), according to a random sequential kinetic mechanism. The reductase activity was strongly inhibited by thiol-blocking reagents. The hydroxylation of phenol in vitro requires the presence of both His6PheA1 and His6PheA2 components, in addition to NADH and FAD, but the physical interaction between the proteins is not necessary for the reaction.  相似文献   

10.
A bacterium, Ochrobactrum anthropi, produced a large amount of a nucleosidase when cultivated with purine nucleosides. The nucleosidase was purified to homogeneity. The enzyme has a molecular weight of about 170,000 and consists of four identical subunits. It specifically catalyzes the irreversible N-riboside hydrolysis of purine nucleosides, the Km values being 11.8 to 56.3 μM. The optimal activity temperature and pH were 50°C and pH 4.5 to 6.5, respectively. Pyrimidine nucleosides, purine and pyrimidine nucleotides, NAD, NADP, and nicotinamide mononucleotide are not hydrolyzed by the enzyme. The purine nucleoside hydrolyzing activity of the enzyme was inhibited (mixed inhibition) by pyrimidine nucleosides, with Ki and Ki′ values of 0.455 to 11.2 μM. Metal ion chelators inhibited activity, and the addition of Zn2+ or Co2+ restored activity. A 1.5-kb DNA fragment, which contains the open reading frame encoding the nucleosidase, was cloned, sequenced, and expressed in Escherichia coli. The deduced 363-amino-acid sequence including a 22-residue leader peptide is in agreement with the enzyme molecular mass and the amino acid sequences of NH2-terminal and internal peptides, and the enzyme is homologous to known nucleosidases from protozoan parasites. The amino acid residues forming the catalytic site and involved in binding with metal ions are well conserved in these nucleosidases.  相似文献   

11.
Macroalgae are considered to be promising biomass for fuels and chemicals production. To utilize brown macroalgae as biomass, the degradation of alginate, which is the main carbohydrate of brown macroalgae, into monomeric units is a critical prerequisite step. Saccharophagus degradans 2-40 is capable of degrading more than ten different polysaccharides including alginate, and its genome sequence demonstrated that this bacterium contains several putative alginate lyase genes including alg17C. The gene for Alg17C, which is classified into the PL-17 family, was cloned and overexpressed in Escherichia coli. The recombinant Alg17C was found to preferentially act on oligoalginates with degrees of polymerization higher than 2 to produce the alginate monomer, 4-deoxy-l-erythro-5-hexoseulose uronic acid. The optimal pH and temperature for Alg17C were found to be 6 and 40 °C, respectively. The K M and V max of Alg17C were 35.2 mg/ml and 41.7 U/mg, respectively. Based on the results of this study, Alg17C could be used as the key enzyme to produce alginate monomers in the process of utilizing alginate for biofuels and chemicals production.  相似文献   

12.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

13.
We describe a convenient method for amplification of novel epoxide hydrolase-encoding genes directly from the metagenome. In a first step, small specific regions of putative epoxide hydrolase genes were amplified by using PCR with degenerate consensus primers specific for prokaryotic epoxide hydrolases, and environmental DNA as template. In a second step, the sequence obtained from one randomly selected epoxide hydrolase gene fragment served as the starting point for genome-walking PCR. This technique enabled us to recover a complete novel epoxide hydrolase gene with a GC content of 64.7%. A database search revealed that this novel gene was 44% and 43% identical to two putative epoxide hydrolases from Ralstonia metallidurans and Ralstonia eutropha, respectively, at the amino acid level, the highest among all orthologs searched. The gene, which encodes a polypeptide with a molecular mass of 34 kDa, was cloned and overexpressed in Escherichia coli. The recombinant enzyme showed hydrolyzing activity toward aliphatic terminal epoxides with chain lengths ranging from 6 to 10 carbon atoms. In all cases, the enantioselectivity of the enzyme was low. Determination of the regioselectivity coefficients αR and αS revealed that the oxirane ring was attacked almost exclusively at the non-substituted carbon of the R-epoxide. The preference for attack at the non-substituted ring carbon of the S-epoxide was dependent on the chain length of the substrate and ranged from 55% to 78%, resulting in a partially enantioconvergent reaction.  相似文献   

14.
Summary In two previous reports (Narhi LO, Fulco AJ, J. Biol. Chem. 261: 7160–7169, 1986; Ibid., 262: 6683–6690, 1987) we described the characterization of a catalytically self-sufficient 119000-dalton P-450 cytochrome that was induced by barbiturates in Bacillus megaterium. In the presence of NADPH and O2, this polypeptide (cytochrome P-450BM-3) catalyzed the hydroxylation of long-chain fatty acids without the aid of any other protein. The gene encoding this unique monooxygenase was cloned into Escherichia coli and the clone harboring the recombinant plasmid produced a protein that behaved electrophoretically and immunochemically like the B. megaterium enzyme (Wen LP, Fulco AJ, J. Biol. Chem. 262: 6676–6682, 1987). We have now compared authentic P-450BM-3 from B. megaterium and putative P-450BM-3 isolated from transformed E. coli and have found them to be indistinguishable with respect to chromatographic and electrophoretic behavior, reaction with specific antibody, prosthetic group (heme, FAD and FMN) analyses, spectra, enzymology, limited trypsin proteolysis and partial amino acid sequencing. We thus conclude that the P-450 cytochrome expressed by the transformed E. coli is essentially identical to native P-450BM-3 induced by barbiturates in B. megaterium. The evidence furthermore suggests that the primary amino acid sequence of this complex protein is alone sufficient to direct the proper integration of the three prosthetic groups and to specify folding of the polypeptide into the correct tertiary structure.Abbreviations SDS Sodium Dodecylsulfate - PAGE Polyacrylamide Gel Electrophoresis - HPLC High Performance Liquid Chromatography  相似文献   

15.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (KD) of 0.25 nM. Steady-state enzyme kinetics showed an apparent Km of 5.3 nM and kcat of 0.2 min−1 of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100 mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 °C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure–function analysis.  相似文献   

16.
For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate‐dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP‐dependent enzyme which performs a proton‐consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein/γ‐aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH‐dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non‐pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co‐regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA‐enriched foods possess health‐promoting properties.  相似文献   

17.
Summary Serratia marcescens Sa-3 possesses two homoserine dehydrogenases and neither has any aspartokinase activity unlike the case ofEs-cherichia coli enzymes. The two enzymes have been separated. One of them is active with either NAD or NADP+ and has been purified about 180-fold to homogeneity. This enzyme is completely repressed by the presence of 1mm methionine or homoserine in the growth medium, but its activity is unaffected by any amino acid of the aspartate family either singly or together. In many of its properties (such as pH optimum, Km for substrate and cofactors), it resembles its counterpart inE. coli K12. Potassium ions stabilize the enzyme but are not essential for activity. Its molecular weight is around 155,000 as determined by gel filtration and approximately 76,000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme has two subunits (polypeptide chains) in the molecule: 8m urea has no effect on enzyme activity. This enzyme represents approximately 30% of the total homoserine dehydrogenase activity ofS. marcescens unlike inSalmonella typhimurium andE. coli K12 where it is a minor or a negligible component.  相似文献   

18.
Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.  相似文献   

19.
Chromobacterium sp. strain DS-1 produces an extracellular cholesterol oxidase that is very stable at high temperatures and in the presence of organic solvents and detergents. In this study, we cloned and sequenced the structural gene encoding the cholesterol oxidase. The primary translation product was predicted to be 584 amino acid residues. The mature product is composed of 540 amino acid residues. The amino acid sequence of the product showed significant similarity (53–62%) to the cholesterol oxidases from Burkholderia spp. and Pseudomonas aeruginosa. The DNA fragment corresponding to the mature enzyme was subcloned in the pET-21d(+) expression vector and expressed as an active product in Escherichia coli. The cholesterol oxidase produced from the recombinant E. coli was purified to homogeneity. The physicochemical properties were similar to those of native enzyme purified from strain DS-1. K m and V max values of the cholesterol oxidase were estimated from Lineweaver–Burk plots. The V max/K m ratio of the enzyme was higher than those of commercially available cholesterol oxidases. The circular dichroism spectral analysis of the recombinant DS-1 enzyme and Burkholderia cepacia ST-200 cholesterol oxidase showed that the conformational stability of the DS-1 enzyme was higher than that of B. cepacia ST-200 enzyme at higher temperatures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号