首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymph node and spleen cells from mice infected with Babesia microti of human origin developed the ability to transfer adoptive immunity to naive mice within 25 days after infection. This protective activity was greater in cells obtained at 32 days than in cells obtained at 25 days postinfection and remained stable up to 52 days postinfection. Recipients of lymph node cells and spleen cells displayed similar peak parasitemias although 2 days after peak parasitemia, immune spleen cell recipients had significantly lower parasitemias than immune lymph node cell recipients. Strong protective activity was demonstrated when cells were transferred 1 day postinfection, while equal numbers of cells, transferred 3 days postinfection did not confer significant protection over nonimmune cells. There was also a suggestion that the number of immune spleen cells necessary for significant protection was directly related to the number of parasites inoculated. The subpopulation of lymphocytes responsible for the transfer of adoptive immunity to B. microti of human origin was then studied in BALB/c mice depleted of T lymphocytes by thymectomy and lethal irradiation. One day after infection with B. microti, T-cell-depleted mice were given complement-treated immune spleen cells, anti-θ serum-treated immune spleen cells, nonimmune spleen cells, or no cells. Similar experiments were performed comparing the effects of anti-immunoglobulin serum-treated and unfractionated immune spleen cells on B. microti parasitemia. Treatment with anti-θ serum abrogated the protective activity of immune spleen cells while anti-immunoglobulin serum treatment had no effect. These results suggest that immunologic memory of B. microti in BALB/c mice is modulated by T rather than B lymphocytes.  相似文献   

2.
Susceptibility of adult mice to i.p. infection with HSV-1 was greatly increased by administration of a single dose of cyclophosphamide. Mortality of cyclophosphamide-treated virus-infected mice was associated with increased virus replication and pathologic changes in brain and liver. The development of a fatal infection in immunosuppressed mice could be curtailed after transfer of specifically immune spleen cells. Passively transferred antibody had no such effect. Protective activity of spleen cells was significantly reduced after pretreatment with anti-theta serum. Significant protection was also achieved when normal spleen cells plus immune serum were administered simultaneously. Our results indicate that protection against this virus infection is predominantly T cell dependent, and suggests that antibody-dependent cell-mediated protection may also be operative in vivo.  相似文献   

3.
The role of cell mediated immune response to mouse hepatitis virus (MHV) infection in mice was studied by transferring spleen cells from immune heterozygous littermates (nu/+). A suppressive effect on viral growth was seen in infected nude (nu/nu) mice, whereas immune nu/+ serum transfer had no effect. The protective effect of immune nu/+ spleen cells was significantly reduced by treatment with anti-theta serum plus complement but not with anti-Ig serum. In infected nu/nu mice which received transfers of immune nu/+ cells, neutralizing antibody appeared although the titer was not high enough to protect nu/nu mice from fatal infection. Histopathologically, lymphocyte infiltration in hepatic lesions was evident in infected nu/nu mice with nu/+ cell transfer, while it was slight without nu/+ cell transfer.  相似文献   

4.
To study the cell-mediated link of immune response in mice in experimental influenza, both spleen cells obtained from intact mice and infected with the virus in vitro and spleen cells obtained from infected mice on day 6 after infection may equally be used with success as target cells. This opens the possibility of studying the role of virus-specific modifications of the cell membranes of immunocytes in the pathogenesis of influenza infection. The use of effector cells without their additional stimulation with homologous virus in vitro permits the simultaneous study of different mechanisms of specific (cytotoxic T lymphocytes and antibody-dependent cell-mediated cytotoxicity) and nonspecific (natural killer cells) cell-mediated immunity developing in influenza, as well as the study of the functional activity of spleen cells under the conditions similar to those existing in the body when the duration of the experiment is 5-7 days shorter.  相似文献   

5.
The P3HR-1 Burkitt lymphoma line carries the Epstein-Barr virus (EBV) genome and a small proportion of the cells (1-3%) enter the lytic cycle spontaneously. Treatment with TPA and n-butyrate elevates considerably the number of virus-producing cells (25-35%). Cells which enter the lytic cycle express the EBV early antigen EA, the viral capsid antigen VCA, and the membrane antigen MA. Antibodies against these antigens are present in EBV-immune human sera. The expression of virus envelope protein on the plasma membrane renders the cells sensitive to immune effector mechanisms. These were shown to be initiated by the alternative complement pathway (ACP)-activating capacity of the cells and by their reactivity with antibodies directed to the MA. When incubated with EBV-immune or nonimmune human serum, the induced (P3HR-1-V) cells activated C3 through ACP and fixed the generated C3 fragments. The efficiency of opsonization was higher in immune serum. By varying the experimental conditions we showed the damage of the induced cells by the complement system and by blood lymphocytes, and analysed the involvement of antibodies and the activated C3 fragments in the lymphocyte-mediated lysis. P3HR-1-V cells were lysed by immune serum and also by nonimmune serum though with lower efficiency. The induced cells had elevated sensitivity to the NK effect which was potentiated if the conditions allowed their opsonization. In the presence of antibodies the lymphocyte-mediated lysis was considerably higher and the ADCC mechanism was also potentiated by opsonization. These experiments suggest that B cells which enter the virus-producing cycle may be eliminated in EBV nonimmune host by NK cells. After the antibody response against the virus develops, the attack on these cells is more efficient through complement and lymphocyte-mediated antibody-dependent mechanisms. These effector mechanisms are enhanced by opsonization which is the consequence of the C3-activating capacity of the cells. The multiple ways of the immune attack on the B cells prepared to produce EBV may explain the absence of EA and VCA positive B cells in tumor cell populations and during the acute phase of infectious mononucleosis.  相似文献   

6.
E L Parr  M B Parr 《Journal of virology》1997,71(11):8109-8115
We investigated the protective role of antibodies in vaginal secretions of mice that were immune to vaginal challenge with herpes simplex virus type 2 (HSV-2). Unfractionated vaginal immunoglobulins from immune and nonimmune mice and affinity-purified immunoglobulin G (IgG) and secretory IgA (S-IgA) from immune secretions were adjusted to their concentrations in vivo. Wild-type HSV-2 was incubated in the immunoglobulin preparations for 15 min in vitro, followed by inoculation into vaginae of nonimmune mice. HSV-2 was neutralized by unfractionated antibody and purified IgG from immune secretions but not by unfractionated nonimmune antibody or by purified immune S-IgA. The protective effect of IgG in vivo was investigated by passively transferring purified serum IgG from immune and nonimmune donors to nonimmune recipients before vaginal challenge infection. Immune IgG significantly reduced the percentage of vaginal epithelium infected, concentrations of shed virus protein in the vaginal lumen, and illness scores, even though the viral antibody titers in serum and vaginal secretions of recipient mice at the time of challenge were only 29 and 8%, respectively, of those in actively immunized mice. Additionally, removal of vaginal secretions from immune mice 10 min before vaginal challenge with HSV-2 significantly increased the concentration of shed virus protein in the vaginal lumen after challenge. Collectively, the data indicate that IgG antibody in vaginal secretions of immune mice provides early protection against vaginal challenge infection, probably by neutralizing virus in the vaginal lumen. In contrast, S-IgA antibody contributed relatively little to immune protection of the vagina.  相似文献   

7.
The capacity of human immunodeficiency virus (HIV) antibody-positive sera from homosexually active men without acquired immune deficiency syndrome to lyse the HIV-infected T cell lines MOLT-4f and CCRF-CEM (CEM) in cooperation with lymphocytes from normal donors was investigated. Twenty-seven HIV antibody-positive sera, most of which enhanced the killing of HIV-infected MOLT-4f and CEM target cells by normal mononuclear cells were studied in detail. HIV antibody-positive sera resulted in lysis at dilutions as high as 1/10,000. HIV antibody-negative sera did not augment lysis of infected target cells. In addition, lysis of uninfected targets was not enhanced in the presence of HIV antibody-positive sera. Because fractionation of the HIV antibody-positive sera on a protein A affinity column resulted in recovery of the activity from the IgG fraction, the extra cytotoxic activity mediated by nonimmune cells in the presence of immune sera appears to be antibody-dependent. Furthermore, the cytotoxic effector cells were in the nonrosetting fraction of lymphocytes and expressed Leu-11 (cluster designation (CD)15) antigens, which is characteristic of cells participating in antibody-dependent cellular cytotoxicity reactions. The antibody specificity of the sera, determined by radioimmunoprecipitation, provides evidence that antibody-dependent cellular cytotoxicity can occur even when there are no detectable antibodies directed against gag proteins. Sera which lacked detectable antibodies to the envelope protein gp120 by radioimmunoprecipitation did not mediate antibody-dependent cellular cytotoxicity.  相似文献   

8.
Freshly collected peritoneal cells (PC) and cultured spleen cells (SC) (but not fresh SC) from nonimmune mice could mediate antibody-dependent cellular cytotoxicity (ADCC) against herpes simplex virus (HSV)-infected cells in the presence of mouse or human sera containing antibody to HSV. PC also demonstrated variable natural killer cell cytotoxicity to infected cells. Both PC and cultured SC required high concentrations of antibody and high effector to target cell ratios for optimal ADCC. The time kinetics of the reaction appeared to depend on the state of activation of the effector cells. In both PC and SC populations, ADCC activity was limited to adherent cells, and was profoundly inhibited by particulate latex or silica. The murine effector cell found in PC and SC able to mediate ADCC to HSV-infected cells appears to be a macrophage.  相似文献   

9.
Hyperimmune, but not normal immune, monospecific antiserum made to capsid protein of Sindbis virus (SIN) was found to cause cytolysis equally well of both SIN- and Semliki Forest virus-infected L929 cells in antibody-dependent, complement-mediated cytotoxicity assays. The cell surface reactivity of the hyperimmune antiserum was also demonstrated by solid-phase radioimmune assays with unfixed infected cells or infected cells fixed with low concentrations of glutaraldehyde (0.025%) before reactivity with antisera. Higher concentrations of glutaraldehyde lowered the sensitivity of detection. Purified SIN capsid protein specifically inhibited antibody-dependent, complement-mediated cytotoxicity by the monospecific anti-capsid protein serum on SIN- and Semliki Forest virus-infected target cells. That hyperimmune anti-SIN serum also cross-reacts with capsid protein on the surface of Semliki Forest virus-infected cells was suggested by the fact that capsid protein inhibited cross-cytolysis in the antibody-dependent, complement-mediated cytotoxicity assay. The latter antiserum was collected after repeated injections of purified virions over a 9-month period. The results suggest that hyperimmune monospecific antisera made to SIN capsid protein or hyperimmune antisera to SIN or Semliki Forest virions detect homologous and cross-reacting capsid protein determinants on the surface of infected cells.  相似文献   

10.
Resistance to the paralytic effects of a wild mouse (Cas-Br-M) murine leukemia virus infection develops with age and is complete by 10 days of age in susceptible NFS mice. The possibility that cell-mediated immunity plays a significant role in this resistance was suggested by the observation that treatment of 10-day-old mice with antithymocyte serum rendered them susceptible to paralysis. By comparison, mice rendered incapable of generating a humoral immune response by treatment from birth to 1 month of age with anti-immunoglobulin M serum did not develop paralysis after challenge with virus at day 10. Transfer of unseparated and T-cell-enriched populations of Cas-Br-M murine leukemia virus-immune spleen cells protected neonatally infected NFS recipients from paralysis; transfer of Cas-Br-M murine leukemia virus-immune populations enriched for B cells delayed the onset but did not ultimately protect neonatally infected NFS mice from paralysis. Transfer of naive adult spleen cells had no protective effect in neonatally infected NFS mice. High-level virus replication occurred in the spleens and brains of all mice that developed paralysis regardless of treatment; low-level virus replication in spleen and barely detectable replication in brain occurred in mice that remained clinically normal. These studies suggest that the age-acquired resistance to the paralytic effect of Cas-Br-M murine leukemia virus infection is immunologically mediated and that T cells may play a major role.  相似文献   

11.
In an effort to understand the mechanisms involved in the protective immunity to malarial sporozoites, an A/J mouse/Plasmodium berghei model was studied. Protective immunity could consistently be adoptively transferred only by using sublethal irradiation of recipients (500 R); a spleen equivalent (100 X 10(6))of donor cells from immune syngeneic mice; and a small booster immunization (1 X 10(4)) of recipients with irradiation-attenuated sporozoites. Recipient animals treated in this manner were protected from lethal challenge with 1 X 10(4) nonattenuated sporozoites. Immune and nonimmune serum and spleen cells from nonimmune animals did not protect recipient mice. Fewer immune spleen cells (50 X 10(6)) protected some recipients. In vitro treatment of immune spleen cells with anti-theta sera and complement abolished their ability to transfer protection. This preliminary study suggests that protective sporozoite immunity can be transferred with cells, and that it is T cell dependent.  相似文献   

12.
Syngeneic tumor cell lines free of endogenous type C virus or viral antigen antigen expression were derived from spontaneously occurring tumors of the BALB/cCr mouse. Two cell lines free of endogenous type C virus were examined and found to be highly tumorigenic in tumor growth kinetic studies. In vitro inoculation of these cell lines with Rauscher-murine leukemia virus (R-MuLV) resulted in their chronic infection in which 95 to 100% of the cells were scored as virus positive. These infected lines showed a highly significant increase in their immunogenicity as compared to their uninfected controls. Animals in which these virus-positive tumors regressed were then shown to be highly resistant to challenge with the uninfected tumor cell lines as well as to live R-MuLV. This observed resistance to uninfected tumor cell lines could not be induced by immunization of the mouse with uninfected tumor cells and R-MuLV simultaneously at the same injection site, nor could it be induced with lethally irradiated virus-infected tumor cells, subtumorigenic doses of uninfected cells, or inactivated R-MuLV or Gross leukemia virus (G-MuLV). Cell-mediated cytotoxicity studies revealed that spleen cells obtained from animals whose virus-infected tumors regressed were cytotoxic to homologous infected and uninfected tumor cells as well as to other uninfected tumor cell lines syngeneic to the BALB/c mouse. Correlation of in vitro cytotoxicity with in vivo immunity was provided by the Winn assay, by inoculation into susceptible mice of immune and nonimmune spleen cells premixed with uninfected tumor cells. The immune cells were highly effective in preventing this tumor cell transplantation. It was concluded that type-C virus infection of these syngeneic tumor cells resulted in their acquiring strong transplantation antigens that were in part due to the virion, but were at least in part due to alterations of antigens or haptens that are present in a less immunogenic form on the uninfected tumor cell.  相似文献   

13.
The mechanism of cooperation between the L3T4+ and Lyt-2+ T cell subsets in effective clearance of Sendai virus from infected mouse lungs was studied by adoptive cell transfer using nude mice. Simultaneous transfer of a long-term-cultured Sendai virus-specific L3T4+ T cell line with L3T4+ cell-depleted immune spleen cell (L3T4-) fraction to infected nude mice could result in viral clearance, although single injection with either of these cells was not effective. Instead of the L3T4+ T cells, culture supernatants of the L3T4- T cell line or concanavalin A-stimulated mouse spleen cells and mouse serum immunized with the virus were also active in the cooperative viral clearance with L3T4- fraction. The role of the Sendai virus-sensitized L3T4- cell fraction in cooperative viral clearance with humoral factors could be replaced by neither T cell-deprived immune spleen cell fraction nor normal spleen cells. The 1,500 units of recombinant mouse interleukin 2 (IL-2), which was more than 12 times the IL-2 activity present in the supernatants of the T cell line or concanavalin A-stimulated spleen cells, failed to clear the virus in combination with the L3T4- fraction. Monoclonal antibodies to Sendai or mouse hepatitis viruses were also effective in the cooperative antiviral activity. IL-2 activity was not detected in these monoclonal antibodies and the mouse immune serum. Single injection of any humoral factors failed to clear the virus. These results indicate that Sendai virus-sensitized Lyt-2+ subset of T cells acts cooperatively with humoral factor(s) other than IL-2 or Sendai virus-specific antibody present in supernatants of the T cell line, of concanavalin A-stimulated spleen cells or hybridomas, and in mouse serum immunized with the virus.  相似文献   

14.
Resistance of mice to infection by Listeria monocytogenes involves a biphasic response. The first phase consists of the first 48 h after infection, during which there is multiplication of Listeria in the liver and spleen of infected mice. In these nonimmune mice, macrophages and polymorphonuclear leukocytes are the effector cells involved in controlling multiplication. In the second phase, cell-mediated immunity develops, beginning on day 2, during which multiplication of Listeria is prevented by macrophages possessing increased microbicidal activity that is mediated through the action of lymphokines released by immunologically committed T lymphocytes. The purpose of the present study was to define a role for natural killer (NK) cells in natural resistance to Listeria during the first 48 h after infection, prior to the development of specific immunity. Splenic NK cell activity was enhanced following a sublethal intravenous injection of viable Listeria as early as 24 h after injection and remained elevated throughout the nonimmune phase of infection. Interestingly, treatment of mice with anti-asialo-GM1 significantly enhanced the ability of mice to clear Listeria from the spleen relative to infected controls possessing intact NK cell populations. This was evidenced by 23-fold fewer bacteria obtained from the spleens of anti-asialo-GM1-treated mice. In addition, Percoll-enriched NK cell populations obtained from 48-hour Listeria-infected mice do not exhibit in vitro listericidal activity. These observations suggest a regulatory role of NK cells in resistance against Listeria and preclude a role for NK cells in direct cytolysis. Perhaps these cells modulate the immune response to Listeria by down-regulating the activity of the immune cells crucial to listerial resistance.  相似文献   

15.
Vaccines designed to prevent mucosal transmission of HIV should establish multiple immune effectors in vaccine recipients, including antibodies which are capable of blocking HIV entry at mucosal epithelial barriers and of preventing initial infection of target cells in the mucosa. Immunological analyses of HIV-resistant humans and data obtained in nonhuman primate vaccine studies indicate that both secretory and serum antibodies may play an important role in protection against mucosal transmission of HIV or SIV, whereas cytotoxic T cells are required for clearance of mucosal infection and prevention of systemic spread. This review summarizes the roles of IgA and IgG antibodies in preventing mucosal infection by other viral and bacterial pathogens, and then discusses the various mechanisms by which antibodies might contribute to protection against HIV at mucosal surfaces. These include prevention of mucosal contact, blocking attachment of virus or infected cells to epithelial cells, interception of virus during transepithelial transport, neutralization of virus in the mucosa, and elimination of locally infected cells through antibody-dependent cell-mediated cytotoxic reactions. The regional nature of mucosal immune responses is reviewed in light of its relevance to HIV vaccine development. We conclude that mucosal immunization should be considered a component of vaccine strategies against HIV.  相似文献   

16.
The effect of Semliki Forest virus (SFV) infection of murine spleen mononuclear cells was investigated in vitro. A small percentage of spleen macrophages expressed viral antigens, but no infectious virus particles were released, indicating an abortive-type infection. Wild-type SFV infected a higher percentage of macrophages than the attenuated, demyelinating mutant A7. The proliferation of spleen mononuclear cells under Con A stimulation was inhibited by the viral infection. The supernatant (SN) harvested from infected and Con A-stimulated spleen adherent cells could not stimulate thymocytes in an interleukin 1 (IL-1) assay and indomethacin treatment of infected cultures had no effect. The stimulatory effect of SN from noninfected cultures in the IL-1 assay was reduced when SN from infected cultures was added, suggesting the presence of an IL-1 inhibitor. Interleukin 2 (IL-2) production by splenocytes also decreased after viral infection, but exogenous IL-2 restored the response to Con A stimulation of infected spleen cells. This study demonstrates that abortive SFV infection of spleen macrophages has an immunosuppressive effect which may lead to an aberrant immune regulation.  相似文献   

17.
Cultures of spleen cells from immunized mice were stimulated in vitro by soluble preparations of purified foot-and-mouth disease virus. Virus-specific antibody, as detected by an enzyme-linked immunosorbent assay, was produced by immune spleen cells but not by normal, nonimmune cells. The optimal specific response was obtained with 1 microgram of virus per ml of culture; as the virus concentration was increased, the production of specific antibody was reduced. For very low concentrations of virus (less than 0.01 microgram per culture), there was tentative evidence of suppression of the specific antibody response. The levels of specific antibody induced were dependent on the source and number of plastic-adherent cells present in the cultures. We intend to use this model system to study further the basis of immunity to foot-and-mouth disease virus.  相似文献   

18.
The production of cytotoxic cells in the spleen of adult male BALB/c mice infected with Coxsackievirus B-3 has been examined.An in vitro 51Cr release assay was used to measure cytotoxic activity against virus-infected and uninfected neonatal sygeneic fibroblasts. Cytotoxicity of immune spleen cells against virus-infected targets was detected on the 3rd day after infection, reached a peak on day 7, and then declined to low levels by days 12 and 14. Spleen cells obtained 3 and 5 days after infection also exerted cytotoxicity against uninfected fibroblasts, but by the 7th day there was little or no reactivity against uninfected target cells, although activity against infected fibroblasts was maximal at this time. Reciprocal assays performed by using Coxsackie and vaccinia viruses provided evidence of virus specificity of the cytotoxic reaction. When spleen cells were obtained 7 days after infection, the Coxsackievirus-immune population was not cytotoxic for vaccinia-infected fibroblasts, and the vaccinia-immune population was not cytotoxic for Coxsackievirus-infected targets, although each immune cell preparation caused significant lysis of fibroblasts infected with the homologous virus. Additional studies showed that primary mouse or hyperimmune rabbit anti-Coxsackieviral serum could not block immune spleen cell cytotoxicity or induce complement-mediated lysis of infected targets. The findings indicate that Coxsackievirus infection results in surface membrane alterations, but no evidence was obtained that antiviral antibody could react with the infected cells.  相似文献   

19.
Infant mice are extremely susceptible to fatal Herpes simplex virus (HSV) infection. They are unable to produce antibody to HSV, and their leukocytes cannot mediate antibody-dependent cellular cytotoxicity (ADCC) to HSV-infected cells. In order to avoid H-2-dependent effector mechanisms and instead analyze possible in vivo ADCC, a murine model employing adoptive transfer of antibody and human leukocytes was developed. Administration of either human immune globulin or leukocytes i.p. from HSV immune or nonimmune humans could not protect infant C57BL/6 mice from fatal HSV infection. In contrast, a combination of a subneutralizing dilution of globulin and leukocytes from nonimmune or immune human donors, given one day before inoculation, was highly protective against lethal HSV infection. The cells involved included lymphocytes or monocyte-macrophages. At least 5 X 10(6) viable leukocytes (or 1 X 10(6) monocyte-macrophages) and immune serum globulin concentrations as low as 10(-8) were protective. Infected cell monolayer adsorption and DEAE column fractionation demonstrated that the protection by globulin was due to specific antiviral IgG antibody. Protection was n ot seen in animals receiving virus before immune transfer. Protection did not involve synergistic viral neutralization by antibody and cells, as shown by in vitro experiments. Animals receiving globulin and cells, unlike normal infant mice, had circulating antiviral antibody and peritoneal leukocytes able to mediate ADCC to HSV-infected cells. This is the first in vivo evidence for the role of human ADCC. This model also allows for the in vivo evaluation of the ability of cells from immunocompromised humans to curb viral infection.  相似文献   

20.
The role of serum factors in tumor immunity to cells transformed by PARA-(defective SV40)-adenovirus 7 was investigated. It was found that sera from SV40-sensitized hosts did not block the specific cytotoxicity of SV40-sensitized spleen cells for PARA-7 cells. However, such sera could collaborate with nonsensitized spleen cells to produce specific killing. This activity could be absorbed out by PARA-7 cells but not by cells transformed by cytomegalovirus. The activity of sera from hamsters bearing tumor isografts depended upon when, after transplantation, the specimens were obtained. Sera collected greater than or equal to 10 days after grafting completely blocked immune spleen cell cytotoxicity and did not mediate target cell killing in the presence of normal spleen cells. Sera obtained at an earlier time, i.e., 3 to 6 days after transplantation, consistently were active in the antibody-dependent cellular cytotoxicity test and exhibited reduced or no blocking of antibody-independent cellular cytotoxicity. Thus, there appears to be an inverse correlation in the capacity of serum from tumor bearing hosts to block effector cell cytotoxicity and mediate antibody-dependent cellular cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号