首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. In the course of development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. It has been suggested that myxobacterial development depends on short-range contact-mediated interactions between individual cells, i.e. cell aggregation does not require long-range signaling in the population. In this study, by means of a computational mass-spring model, we investigate what types of short-range interactions between cells can result in the formation of streams and circular aggregates during myxobacterial development. We consider short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We demonstrate that stable streams and circular aggregates can arise only when the trailing cell, in addition to being steered by the tail of the leading cell, is able to speed up to catch up with it. It is suggested that necessary head-to-tail interactions between cells can arise from physical adhesion, response to a diffusible substance or slime extruded by cells, or pulling by motility engine pili. Finally, we consider a case of long-range guiding between cells and show that circular aggregates are able to form without cells increasing speed. These findings present a possibility to discriminate between short-range and long-range guiding mechanisms in myxobacteria by experimentally measuring distribution of cell speeds in circular aggregates.  相似文献   

2.
Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance cell viability and the expression of markers of liver-specific functions. We consider the early stages of aggregate formation, and develop a new mathematical model to investigate two alternative hypotheses (based on evidence in the experimental literature) for the role of stellate cells in promoting aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction between the two cell types is by direct physical contact: the stellates extend long cellular processes which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted to a chemical they themselves produce, and the cells can experience repulsive forces due to overcrowding. We formulate non-local (integro-partial differential) equations to describe the densities of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The behaviour of the model under each hypothesis is studied using a combination of linear stability analysis and numerical simulations. Our results show how the initial rate of aggregation depends upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the relative strengths of attraction and repulsion between the cell types. Guided by our results, we suggest experiments which could be performed to distinguish between the two hypotheses.  相似文献   

3.
Formation of distinct multicellular aggregates is one of the phenomena associated with activation of quiescent human mononuclear leukocytes in vitro. Aggregate formation involves active cell motility and enhances cell-cell interactions required for an optimal proliferative response of T-cells stimulated with agents like phytohemagglutinin. We have developed an assay to quantitate the rate at which motile cells form aggregates on a flat surface. This assay follows the time rate of deviation of cells in undisturbed culture away from an initial random distribution using an "aggregation index." We used this assay to establish minimal culturing conditions required to observe an aggregation response for a partially purified mononuclear leukocyte population. We also studied the ability to aggregate of various subpopulations enriched for T- and B-lymphocytes and monocytes and found evidence for a monocyte requirement for lymphocyte aggregation. In a second assay, we followed the rate of entry of esterase positive monocytes into aggregates and compared this to the rate of entry of mononuclear cells in toto. We found that monocytes are preferentially associated with non-esterase positive cells within one hour of PHA stimulation. The results support the conclusion that monocytes play a central role in directing the motility of human T-lymphocytes leading to their aggregation response in tissue culture.  相似文献   

4.
Marchut AJ  Hall CK 《Biophysical journal》2006,90(12):4574-4584
The pathological manifestation of nine hereditary neurodegenerative diseases is the presence within the brain of aggregates of disease-specific proteins that contain polyglutamine tracts longer than a critical length. To improve our understanding of the processes by which polyglutamine-containing proteins misfold and aggregate, we have conducted molecular dynamics simulations of the aggregation of model polyglutamine peptides. This work was accomplished by extending the PRIME model to polyglutamine. PRIME is an off-lattice, unbiased, intermediate-resolution protein model based on an amino acid representation of between three and seven united atoms, depending on the residue being modeled. The effects of hydrophobicity on the system are studied by varying the strength of the hydrophobic interaction from 12.5% to 5% of the hydrogen-bonding interaction strength. In our simulations, we observe the spontaneous formation of aggregates and annular structures that are made up of beta-sheets starting from random configurations of random coils. This result was interesting because tubular protofibrils were recently found in experiments on polyglutamine aggregation and because of Perutz's prediction that polyglutamine would form water-filled nanotubes.  相似文献   

5.
Under starvation conditions, a swarm of Myxococcus xanthus cells will undergo development, a multicellular process culminating in the formation of many aggregates called fruiting bodies, each of which contains up to 100,000 spores. The mechanics of symmetry breaking and the self-organization of cells into fruiting bodies is an active area of research. Here we use microcinematography and automated image processing to quantify several transient features of developmental dynamics. An analysis of experimental data indicates that aggregation reaches its steady state in a highly nonmonotonic fashion. The number of aggregates rapidly peaks at a value 2- to 3-fold higher than the final value and then decreases before reaching a steady state. The time dependence of aggregate size is also nonmonotonic, but to a lesser extent: average aggregate size increases from the onset of aggregation to between 10 and 15 h and then gradually decreases thereafter. During this process, the distribution of aggregates transitions from a nearly random state early in development to a more ordered state later in development. A comparison of experimental results to a mathematical model based on the traffic jam hypothesis indicates that the model fails to reproduce these dynamic features of aggregation, even though it accurately describes its final outcome. The dynamic features of M. xanthus aggregation uncovered in this study impose severe constraints on its underlying mechanisms.  相似文献   

6.
The effect of protein aggregates on the aggregation of d-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during unfolding and refolding has been studied. The aggregation of GAPDH follows a sigmoid course. The presence of protein aggregates increases the aggregation rate during unfolding and refolding of GAPDH but does not change the extent of aggregation and the final renaturation yield. It is suggested that protein aggregates function as seeds for aggregation via hydrophobic interaction with only GAPDH folding intermediates destined to aggregate and do not affect the distribution between pathways leading to correct folding and aggregation. Moreover, two different proteins do not interfere with each other during their simultaneous refolding together in a buffer. These findings provide insight into a mechanism by which cells prevent protein folding against the interference from aggregation of other proteins.  相似文献   

7.
The long, rod-shaped cells of myxobacteria are polarized by their gliding engines. At the rear, A-engines push while pili pull the front end forward. An hypothesis is developed whereby both engines are partially dis-assembled, then re-assembled at the opposite pole when cells reverse their movement direction. Reversals are induced by an Mgl G-protein switch that controls engine polarity. The switch is driven by an oscillatory circuit of Frizzy proteins. In growing cells, the circuit gives rise to an occasional reversal that makes swarming possible. Then, as myxobacteria begin fruiting body development, a rising level of C-signal input drives the oscillator and changes the reversal pattern. Cells reverse regularly every eight minutes in traveling waves, the reversal period is then prolonged enabling cells to form streams that enlarge tiny random aggregates into fruiting bodies.  相似文献   

8.
《The Journal of cell biology》1990,111(6):2747-2756
The immune function of granulocytes, monocytes, lymphocytes, and other specialized cells depends upon intercellular adhesion. In many cases the molecules mediating leukocyte cell adhesion belong to the Leu-CAM superfamily of adhesive molecules. To elucidate the events of homotypic aggregation in a quantitative fashion, we have examined the aggregation of neutrophils stimulated with formyl peptides, where aggregate formation is a transient reversible cell function. We have mathematically modeled the kinetics of aggregation using a linear model based on particle geometry and rates of aggregate formation and breakup. The time course was modeled as a three-phase process, each phase with distinct rate constants. Aggregate formation was measured on the flow cytometer; singlets and larger particles were distinguished using the intravital stain LDS-751. Aggregation proceeded rapidly after stimulation with formyl peptide (CHO-nle-leu-phe-nle-tyr-lys). The first phase lasted 30-60 s; this was modeled with the largest aggregation rate and smallest rate of disaggregation. Aggregate formation plateaued during the second phase which lasted up to 2.5 min. This phase was modeled with an aggregation rate nearly an order of magnitude less than that of the initial fast phase, whereas the disaggregation rate for this phase did not change significantly. A third phase where disaggregation predominated, lasted the remaining 2-3 min and was modeled with a four to fivefold increase of the disaggregation rate. The mechanism of cell-cell adhesion in the plateau phase was probed with the monoclonal antibody IB4 to the CD18 subunit of the adhesive receptor CR3. Based on these studies it appears that new aggregates do not form to a large degree after the first phase of aggregate formation is complete. However, new adhesive contact sites may form within the contact region of these adherent cells to keep the aggregates together.  相似文献   

9.
Differential cell movement is an important mechanism in the development and morphogenesis of many organisms. In many cases there are indications that chemotaxis is a key mechanism controlling differential cell movement. This can be particularly well studied in the starvation-induced multicellular development of the social amoeba Dictyostelium discoideum. Upon starvation, up to 10(5) individual amoebae aggregate to form a fruiting body The cells aggregate by chemotaxis in response to propagating waves of cAMP, initiated by an aggregation centre. During their chemotactic aggregation the cells start to differentiate into prestalk and prespore cells, precursors to the stalk and spores that form the fruiting body. These cells enter the aggregate in a random order but then sort out to form a simple axial pattern in the slug. Our experiments strongly suggest that the multicellular aggregates (mounds) and slugs are also organized by propagating cAMP waves and, furthermore, that cell-type-specific differences in signalling and chemotaxis result in cell sorting, slug formation and movement.  相似文献   

10.
Established cell lines and primary cultures derived from somatic cells of the testis have been used to study cell-cell interactions. Primary cultures of Sertoli cells or Sertoli-derived cell lines from the mouse (TM4) and rat (TR-ST) will aggregate when plated on monolayers of primary cultures of peritubular myoid cells or a rat (TR-M) cell line which has many properties of peritubular myoid cells. Time-lapse cinematography and scanning and transmission electron microscopy reveal that Sertoli cells formed aggregates after 1 day in coculture, display surface activity and move on the monolayer. When these aggregates touch one another, they rapidly combine. By the 4th day of culture, spherical aggregates are composed of 50 to 200 cells. They do not display surface activity or movement on the myoid monolayer. On the 5th and 6th day of culture most spherical aggregates have flattened to form dome-shaped aggregates in close association with the monolayer. Cells in the aggregates are characterized by long microvilli and some ruffles. In large aggregates, cells sometimes form close associations within the aggregates although junctions are seldom observed. Sertoli-derived cell lines will not aggregate on monolayers of Leydig-derived (TM3) or testicular endothelial-derived (TR-1) cell lines. Neither TM3 nor TR-1 cells will aggregate when plated on myoid monolayers. The TR-M cells produced an extensive extracellular matrix beneath the cells which contains collagen, an amorphous globular material resembling elastin and a fibrous noncollagenous component. Sertoli cells plated on this matrix will not aggregate. Thus the aggregation of Sertoli cells on myoid cell monolayers is cell type, but not species dependent and not determined solely by extracellular matrix components produced by TR-M cells.  相似文献   

11.
A possible model for cell-cell recognition via surface macromolecules.   总被引:5,自引:0,他引:5  
Alternative possibilities for the establishment of the proper cell distribution during embryogenesis are summarized at the beginning, followed by an assessment of the examples known so far where cell-cell recognition is known to be mediated via cell surface components. In the second part the species-specific recognition process which occurs during the sorting-out of dissociated sponge cells is analysed since it may serve as a possible model for cell-cell recognition in higher animals. Three possible mechanisms for the establishment of proper cell distribution are considered. These include, first, chemotaxis: secondly, guidance of cell or cell sheet movement by extracellular matrix or by surrounding cells and thirdly, random movement followed by recognition at the final point of destination. Recognition is necessary for both of the two latter processes, i.e. for cell guidance as well as for locking the cells into their final position after random movement. Two basically different recognition mechanisms should be distinguished from each other. On the one hand cells may recognize each other with the help of macromolecules situated in or just outside of the plasmamembrane which fit to each other like enzymes and substrates or antibodies and antigens. On the other hand, cells may exchange information by exchanging cytoplasmatic components via vesicles or gap junctions. The species-specific aggregation of dissociated sponge cells is considered to be a possible model for cell-cell recognition in higher animals. A proteoglycan-like intercellular macromolecule called aggregation factor seems to mediate recognition of a given species of cells in the reaggregation process of dissociated cells. The data available at the present time suggest that a monovalent surface macromolecule (baseplate) may mediate the recognition process probably by recognizing the carbohydrate side chains of the multivalent proteoglycan aggregation factor. A cell-free system was devised to mimic this aggregation process. Addition of aggregation factor to baseplate-coated sepharose beads of approximately the size of the original sponge cells has essentially the same characteristics as the cellular system. Macromolecule-coded surface information for the recognition between cells has not been established during the embryogenesis of higher animals and remains an interesting challenge.  相似文献   

12.
Isolated chondrocytes form aggregates in suspension culture that maintain chondrocyte phenotype in a physiological pericellular environment. The molecular mechanisms involved in chondrocyte aggregation have not been previously identified. Using this novel suspension culture system, we performed mRNA and protein expression analysis along with immunohistochemistry for potential cell adhesion molecules and extracellular matrix integrin ligands. Inhibition of aggregation assays were performed using specific blocking agents. We found that: (i) direct cell-cell interactions were not involved in chondrocyte aggregation, (ii) chondrocytes in aggregates were surrounded by a matrix rich in collagen II and cartilage oligomeric protein (COMP), (iii) aggregation depends on a beta1-integrin, which binds a triple helical GFOGER sequence found in collagens, (iv) integrin alpha10-subunit is the most highly expressed alpha-subunit among those tested, including alpha5, in aggregating chondrocytes. Taken together, this body of evidence suggests that the main molecular interaction involved in aggregation of phenotypically stable chondrocytes is the alpha10beta1-collagen II interaction.  相似文献   

13.
Marchut AJ  Hall CK 《Proteins》2007,66(1):96-109
Aggregation in the brain of polyglutamine-containing proteins is either a cause or an associated symptom of nine hereditary neurodegenerative disorders including Huntington's disease. The molecular level mechanisms by which these proteins aggregate are still unclear. In an effort to shed light on this important phenomenon, we are investigating the aggregation of model polyglutamine peptides using molecular-level computer simulation with a simplified model of polyglutamine that we have developed. This model accounts for the most important types of intra- and inter-molecular interactions-hydrogen bonding and hydrophobic interactions-while allowing the folding process to be simulated in a reasonable time frame. The model is used to examine the folding of isolated polyglutamine peptides 16, 32, and 48 residues long and the folding and aggregation of systems of 24 model polyglutamine peptides 16, 24, 32, 36, 40, and 48 residues long. Although the isolated polyglutamine peptides did form some alpha and beta backbone-backbone hydrogen bonds they did not have as many of these bonds as they would have if they had folded into a complete alpha helix or beta sheet. In one of the simulations on the isolated polyglutamine peptide 48 residues long, we observed a structure that resembles a beta helix. In the multi-chain simulations we observed amorphous aggregates at low temperatures, ordered aggregates with significant beta sheet character at intermediate temperatures, and random coils at high temperatures. We have found that the temperature at which the model peptides undergo the transition from amorphous aggregates to ordered aggregates and the temperature at which the model peptides undergo the transition from ordered aggregates to random coils increase with increasing chain length. Our finding that the stability of the ordered aggregates increases as the peptide chain length increases may help to explain the experimentally observed relation between polyglutamine tract length and aggregation in vitro and disease progression in vivo. We have also observed in our simulations that the optimal temperature for the formation of beta sheets increases with chain length up to 36 glutamine residues but not beyond. Equivalently, at fixed temperature we find a transition from a region dominated by random coils at chain lengths less than 36 to a region dominated by relatively ordered beta sheet structures at chain lengths greater than 36. Our finding of this critical chain length of 36 glutamine residues is interesting because a critical chain length of 37 glutamine residues has been observed experimentally.  相似文献   

14.
We present the formulation and testing of a mathematical model for the kinetics of homotypic cellular aggregation. The model considers cellular aggregation under no-flow conditions as a two-step process. Individual cells and cell aggregates 1) move on the tissue culture surface and 2) collide with other cells (or aggregates). These collisions lead to the formation of intercellular bonds. The aggregation kinetics are described by a system of coupled, nonlinear ordinary differential equations, and the collision frequency kernel is derived by extending Smoluchowski's colloidal flocculation theory to cell migration and aggregation on a two-dimensional surface. Our results indicate that aggregation rates strongly depend upon the motility of cells and cell aggregates, the frequency of cell-cell collisions, and the strength of intercellular bonds. Model predictions agree well with data from homotypic lymphocyte aggregation experiments using Jurkat cells activated by 33B6, an antibody to the beta 1 integrin. Since cell migration speeds and all the other model parameters can be independently measured, the aggregation model provides a quantitative methodology by which we can accurately evaluate the adhesivity and aggregation behavior of cells.  相似文献   

15.
 Aggregation, the formation of large particles through multiple collision of smaller ones is a highly visible phenomena in oceanic waters which can control material flux to the deep sea. Oceanic aggregates more than 1 cm in diameter have been observed and are frequently described to consist of phytoplankton cells as well as other organic matter such as fecel pellets and mucus nets from pteropods. Division of live phytoplankton cells within an aggregate can also increase the size of aggregate (assuming some daughter cells stay in the aggregate) and hence could be a significant factor in speeding up the formation process of larger aggregate. Due to the difficulty of modeling cell division within aggregates, few efforts have been made in this direction. In this paper, we propose a size structured approach that includes growth of aggregate size due to both cell division and aggregation. We first examine some basic mathematical issues associated with the development of a numerical simulation of the resulting algal aggregation model. The numerical algorithm is then used to examine the basic model behavior and present a comparison between aggregate distribution with and without division in aggregates. Results indicate that the inclusion of a growth term in aggregates, due to cell division, results in higher densities of larger aggregates; hence it has the impact to speed clearance of organic matter from the surface layer of the ocean. Received 1 July 1994; received in revised form 23 February 1996  相似文献   

16.
Marine sponges (Porifera) display an ancestral type of cell-cell adhesion, based on carbohydrate-carbohydrate interaction. The aim of the present work was to investigate further details of this adhesion by using, as a model, the in vitro aggregation of dissociated sponge cells. Our results showed the participation of sulfated polysaccharides in this cell-cell interaction, as based on the following observations: (1) a variety of sponge cells contained similar sulfated polysaccharides as surface-associated molecules and as intracellular inclusions; (2) 35S-sulfate metabolic labeling of dissociated sponge cells revealed that the majority (two thirds) of the total sulfated polysaccharide occurred as a cell-surface-associated molecule; (3) the aggregation process of dissociated sponge cells demanded the active de novo synthesis of sulfated polysaccharides, which ceased as cell aggregation reached a plateau; (4) the typical well-organized aggregates of sponge cells, known as primmorphs, contained three cell types showing sulfated polysaccharides on their cell surface; (5) collagen fibrils were also produced by the primmorphs in order to fill the extracellular spaces of their inner portion and the external layer surrounding their entire surface. Our data have thus clarified the relevance of sulfated polysaccharides in this system of in vitro sponge cell aggregation. The molecular basis of this system has practical relevance, since the culture of sponge cells is necessary for the production of molecules with biotechnological applications.  相似文献   

17.
《Biophysical journal》2023,122(1):197-214
Biomolecular condensates in living cells can exhibit a complex rheology, including viscoelastic and glassy behavior. This rheological behavior of condensates was suggested to regulate polymerization of cytoskeletal filaments and aggregation of amyloid fibrils. Here, we theoretically investigate how the rheological properties of condensates can control the formation of linear aggregates. To this end, we propose a kinetic theory for linear aggregation in coexisting phases, which accounts for the aggregate size distribution and the exchange of aggregates between inside and outside of condensates. The rheology of condensates is accounted in our model via aggregate mobilities that depend on aggregate size. We show that condensate rheology determines whether aggregates of all sizes or dominantly small aggregates are exchanged between condensate inside and outside on the timescale of aggregation. As a result, the ratio of aggregate numbers inside to outside of condensates differs significantly. Strikingly, we also find that weak variations in the rheological properties of condensates can lead to a switch-like change of the number of aggregates. These results suggest a possible physical mechanism for how living cells could control linear aggregation in a switch-like fashion through variations in condensate rheology.  相似文献   

18.
Gao T  Knecht D  Tang L  Hatton RD  Gomer RH 《Eukaryotic cell》2004,3(5):1176-1184
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of approximately 20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin- cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB.  相似文献   

19.
Dictyostelium Crp is a member of the cyclin-dependent kinase (Cdk) family of proteins. It is most related in sequence to mammalian Cdk5, which unlike other members of the family, has functions that are unrelated to the cell cycle. In order to better understand the function of Crp in Dictyostelium, we overexpressed a dominant negative form, Crp-D144N, under the control of the actin 15 promoter. Cells overexpressing Crp-D144N exhibit a reduced growth rate in suspension culture and reduced rates of fluid-phase endocytosis and phagocytosis. There is no reduction in Cdc2 kinase activity in extracts from cells overexpressing Crp-D144N, suggesting that the growth defect is not due to inhibition of Cdc2. In addition to the growth defect, the act15::crp-D144N transformants aggregate at a slower rate than wild-type cells and form large aggregation streams. These eventually break up to form small aggregates and most of these do not produce mature fruiting bodies. The aggregation defect is fully reversed in the presence of wild-type cells but terminal differentiation is only partially rescued. In act15::crp-D144N transformants, the countin component of the counting factor, a secreted protein complex that regulates the breakup of streams, mostly appears outside the cell as degradation products and the reduced level of the intact protein may at least partially account for the initial formation of the large aggregation streams. Our observations indicate that Crp is important for both endocytosis and efflux and that defects in these functions lead to reduced growth and aberrant development.  相似文献   

20.

Background

A major hurdle in the use of exogenous stems cells for therapeutic regeneration of injured myocardium remains the poor survival of implanted cells. To date, the delivery of stem cells into myocardium has largely focused on implantation of cell suspensions.

Methodology and Principal Findings

We hypothesize that delivering progenitor cells in an aggregate form would serve to mimic the endogenous state with proper cell-cell contact, and may aid the survival of implanted cells. Microwell methodologies allow for the culture of homogenous 3D cell aggregates, thereby allowing cell-cell contact. In this study, we find that the culture of cardiac progenitor cells in a 3D cell aggregate augments cell survival and protects against cellular toxins and stressors, including hydrogen peroxide and anoxia/reoxygenation induced cell death. Moreover, using a murine model of cardiac ischemia-reperfusion injury, we find that delivery of cardiac progenitor cells in the form of 3D aggregates improved in vivo survival of implanted cells.

Conclusion

Collectively, our data support the notion that growth in 3D cellular systems and maintenance of cell-cell contact improves exogenous cell survival following delivery into myocardium. These approaches may serve as a strategy to improve cardiovascular cell-based therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号