首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype "chocolate" (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38(G19V) is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles.  相似文献   

2.
Chemokines and chemokine receptors in leukocyte trafficking   总被引:1,自引:0,他引:1  
Chemokines regulate inflammation, leukocyte trafficking, and immune cell differentiation. The role of chemokines in homing of naive T lymphocytes to secondary lymphatic organs is probably the best understood of these processes, and information on chemokines in inflammation, asthma, and neurological diseases is rapidly increasing. Over the past 15 years, understanding of the size and functional complexity of the chemokine family of peptide chemoattractants has grown substantially. In this review, we first present information regarding the structure, expression, and signaling properties of chemokines and their receptors. The second part is a systems physiology-based overview of the roles that chemokines play in tissue-specific homing of lymphocyte subsets and in trafficking of inflammatory cells. This review draws on recent experimental findings as well as current models proposed by experts in the chemokine field.  相似文献   

3.
4.
5.
The biosynthesis of plant natural products involves a large number of enzymes that create and elaborate a bewildering array of chemical structures, which are generally involved in ecophysiological interactions. Alkaloids are one of the largest groups of natural products and are generally produced through an assortment of intricate pathways. The application of molecular biochemical approaches to investigate the cell biology of alkaloid pathways has revealed a paradigm for the complex, yet highly ordered, organization of biosynthetic enzymes at both the cellular and subcellular levels. Many different cell types have been implicated in alkaloid formation and storage, in one case suggesting the intercellular transport of enzymes. The localization of enzymes to numerous cellular compartments shows the importance of protein targeting in the assembly of alkaloid pathways. Recent studies have also pointed to the possible interaction of biosynthetic enzymes in multi-enzyme complexes. These processes must be considered to be integral components of the mechanisms that regulate alkaloid biosynthesis and perhaps other natural product pathways.  相似文献   

6.
Autoimmune diseases of the central nervous system (CNS) involve the migration of abnormal numbers of self-directed leukocytes across the blood-brain barrier that normally separates the CNS from the immune system. The cardinal lesion associated with neuroinflammatory diseases is the perivascular infiltrate, which comprises leukocytes that have traversed the endothelium and have congregated in a subendothelial space between the endothelial-cell basement membrane and the glial limitans. The exit of mononuclear cells from this space can be beneficial, as when virus-specific lymphocytes enter the CNS for pathogen clearance, or might induce CNS damage, such as in the autoimmune disease multiple sclerosis when myelin-specific lymphocytes invade and induce demyelinating lesions. The molecular mechanisms involved in the movement of lymphocytes through these compartments involve multiple signalling pathways between these cells and the microvasculature. In this review, we discuss adhesion, costimulatory, cytokine, chemokine and signalling molecules involved in the dialogue between lymphocytes and endothelial cells that leads to inflammatory infiltrates within the CNS, and the targeting of these molecules as therapies for the treatment of multiple sclerosis.  相似文献   

7.
Chemerin was isolated as the natural ligand of the G protein-coupled receptor ChemR23. Chemerin acts as a chemotactic factor for leukocyte populations expressing ChemR23, particularly immature plasmacytoid dendritic cells, but also immature myeloid DCs, macrophages and natural killer cells. Chemerin is expressed by epithelial and non-epithelial cells as an inactive precursor, present at nanomolar concentrations in plasma. Processing of the precursor C-terminus is required for generating bioactive forms of chemerin. Various proteases mediate this processing, including neutrophil serine proteases and proteases from coagulation and fibrinolytic cascades. ChemR23-expressing cells are recruited in human inflammatory diseases, such as psoriasis and lupus. In animal models, both pro-inflammatory and anti-inflammatory roles of chemerin have been reported. Recently, two other receptors for chemerin were described, GPR1 and CCRL2, but their functional relevance is largely unknown. Both chemerin and ChemR23 are also expressed by adipocytes, and the emerging role of chemerin as an adipokine regulating lipid and carbohydrate metabolism is an area of intense research.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis and preferentially kills tumor cells by engaging specific glycosylated death receptors, resulting in the internalization of ligand/receptor complexes and recruitment of the initiator caspase-8 to an activation platform known as the death-inducing signaling complex (DISC). However, emergence of TRAIL-resistant sub-populations may contribute to therapeutic failure. To investigate resistance mechanisms, we isolated a stable TRAIL-resistant sub-population of the metastatic colon cancer cell line LS-LIM6, designated LIM6-TR. LIM6-TR cells are impaired in endocytosis of TRAIL/death receptors complexes and failed to recruit/activate caspase-8 to the DISC upon TRAIL stimulation. Differential activation of Wnt and JNK pathways is not responsible for acquisition of TRAIL resistance. LIM6-TR cells display a marked increase in cell-surface expression of galectin-3, an endogenous lectin, which co-localizes with and binds death receptors. Silencing of galectin-3 restores TRAIL sensitivity and promotes TRAIL-mediated endocytosis of TRAIL/death receptors complexes. Inhibitors of galectin-3 and glycosylation also re-sensitize LIM6-TR to TRAIL and restore internalization of ligand/receptors complexes. These studies identify a novel TRAIL-resistance mechanism in which galectin-3 impedes trafficking of death receptor by anchoring them in glycan nano-clusters, blocking the execution of the apoptosis signal.  相似文献   

9.
It is reported that PTP1B limits cytokine signaling in vitro. However, PTP1B's function during inflammation in vivo is not known. In this report, we determined whether PTP1B deficiency affects allergic inflammation in vivo. Briefly, lungs of OVA-challenged PTP1B(-/-) mice had elevated numbers of eosinophils and eosinophil progenitors at 6 h after one OVA challenge and at 24 h after a third OVA challenge as compared with OVA-challenged wild-type mice. There was also an increase in numbers of CD11b(+)SiglecF(+)CD34(+)IL-5Rα(+) eosinophil progenitors in the bone marrow, peripheral blood, and spleens of OVA-challenged PTP1B(-/-) mice. Intravital microscopy revealed that, in OVA-challenged PTP1B(-/-) mice, blood leukocytes rapidly bound to endothelium (5-30 min), whereas, in wild-type mice, blood leukocytes bound to endothelium at the expected 6-18 h. Consistent with early recruitment of leukocytes, lung eotaxin and Th2 cytokine levels were elevated early in the PTP1B(-/-) mice. Interestingly, spleen leukocytes from PTP1B(-/-) mice exhibited an increased chemotaxis, chemokinesis, and transendothelial migration in vitro. In summary, PTP1B functions as a critical negative regulator to limit allergic responses.  相似文献   

10.
Leukocyte transmigration across the blood-brain barrier (BBB) is a multistep process that can be mediated by chemokines. These low-molecular-weight chemoattractant proteins are secreted by cells within the central nervous system (CNS) in response to injury or on activation. Leukocytes transmigrate toward this chemokine gradient, crossing the BBB and gaining access to the CNS parenchyma. Depending on the chemokine, the nature of the insult, and the type of cell that transmigrates, the BBB integrity may be disrupted, leading to its increased permeability. Both the inflammation resulting from leukocyte transmigration and BBB perturbations contribute to CNS pathology. The mechanisms that mediate leukocyte transmigration and BBB disruption, as well as tissue culture models that are used to study leukocyte trafficking, are the focus of this review.  相似文献   

11.
Acute cold restraint stress (ACRS) has been reported to suppress host defenses against Listeria monocytogenes, and this suppression was mediated by beta1-adrenoceptors (β1-ARs). Although ACRS appears to inhibit mainly early innate immune defenses, interference with leukocyte chemotaxis and the involvement of β1-AR (or β2-AR) signaling had not been assessed. Thus, the link between sympathetic nerve stimulation, release of neurotransmitters, and changes in blood leukocyte profiles, including oxidative changes, following ACRS was evaluated. The numbers of leukocyte subsets in the blood were differentially affected by β1-ARs and β2-ARs following ACRS; CD3+ (CD4 and CD8) T-cells were shown to be decreased following ACRS, and the T cell lymphopenia was mediated mainly through a β2-AR mechanism, while the decrease in CD19+ B-cells was influenced through both β1- and β2-ARs, as assessed by pharmacological and genetic manipulations. In contrast to the ACRS-induced loss of circulating lymphocytes, the number of circulating neutrophils was increased (i.e., neutrophilia), and this neutrophilia was mediated through β1-ARs. The increase in circulating neutrophils was not due to an increase in serum chemokines promoting neutrophil emigration from the bone marrow; rather it was due to neutrophil release from the bone marrow through activation of a β1-AR pathway. There was no loss of glutathione in any of the leukocyte subsets suggesting that there was minimal oxidative stress; however, there was early production of nitric oxide and generation of some protein radicals. Premature egress of neutrophils from bone marrow is suggested to be due to norepinephrine induction of nitric oxide, which affects the early release of neutrophils from bone marrow and lessens host defenses.  相似文献   

12.
The control of leukocyte glycolysis   总被引:4,自引:0,他引:4  
  相似文献   

13.
Pneumolysin (PLY) is a major virulence factor released by Streptococcus pneumoniae and has been implicated in the pathogenesis of pneumococcal pneumonia. In this study, we evaluated the contribution of newly recruited neutrophils and monocytes and resident alveolar macrophages to the pathogenesis of PLY-induced lung injury. Mice received either adhesion-blocking Abs to inhibit alveolar leukocyte trafficking or liposomal clodronate to deplete alveolar macrophages before intratracheal application of native PLY or its noncytotoxic derivative PdB. We found that treatment with PLY but not PdB resulted in increased lung vascular permeability. In addition, PLY also induced a decrease in the resident alveolar macrophage population, and the recruitment of peripheral blood neutrophils and monocytes into the alveolar space. Blockade of PLY-induced alveolar leukocyte trafficking by pretreatment of mice with anti-CD18 plus anti-CD49d Abs or depletion of circulating neutrophils did not attenuate the increase in lung permeability observed in response to intratracheal PLY. In addition, depletion of resident alveolar macrophages with clodronated liposomes did not reduce alveolar injury developing in response to PLY. PLY-induced lung injury was associated with only a small increase in bronchoalveolar lavage concentrations of cytokines. These data indicate that PLY-induced lung injury results from direct pneumotoxic effects on the alveolar-capillary barrier and is independent of both resident and recruited phagocytic cells.  相似文献   

14.
15.
AimsTo investigate the mechanism by which platelet endothelial cell adhesion molecule 1 (PECAM-1/CD31), an immunoglobulin (Ig)-superfamily cell adhesion and signaling receptor, regulates pro-inflammatory cytokine levels. The purpose of the present investigation was to test the hypothesis that PECAM-1 influences circulating cytokine levels by regulating the trafficking of activated, cytokine-producing leukocytes to sites of inflammation.Main methodsPECAM-1+/+ and PECAM-1?/? mice were subjected to lipopolysaccharide (LPS)-induced endotoxemia, and systemic cytokine levels were measured by Bioplex multiplex cytokine assays. Flow cytometry was employed to enumerate leukocytes at inflammatory sites and to measure cytokine synthesis in leukocyte sub-populations. Enzyme-linked immunosorbent assay (ELISA) was used to measure cytokine levels in tissue samples and in supernatants of in vitro-stimulated leukocytes.Key findingsWe confirmed earlier reports that mice deficient in PECAM-1 had greater systemic levels of pro-inflammatory cytokines following intraperitoneal (IP) LPS administration. Interestingly, expression of PECAM-1, in mice, had negligible effects on the level of cytokine synthesis by leukocytes stimulated in vitro with LPS and in peritoneal macrophages isolated from LPS-injected mice. There was, however, excessive accumulation of macrophages and neutrophils in the lungs of PECAM-1-deficient, compared with wild-type, mice — an event that correlated with a prolonged increase in lung pro-inflammatory cytokine levels.SignificanceOur results demonstrate that PECAM-1 normally functions to dampen systemic cytokine levels during LPS-induced endotoxemia by diminishing the accumulation of cytokine-producing leukocytes at sites of inflammation, rather than by modulating cytokine synthesis by leukocytes.  相似文献   

16.
The production of antibodies during pregnancy or after parturition is a natural occurrence in many mammalian species. Fetal cells have been detected in the peripheral blood of women and mice and are thought to be the immune stimulus for antibody production. The aim of this study was to investigate if the production of maternal anti-fetal antibodies during ruminant pregnancy is the result of fetal leukocyte trafficking across the placenta. Maternal pregnancy serum was collected from 94 does whose fetuses received sheep hematopoietic stem cells via in utero transplantation at 49 to 62 d of gestation. Serum samples were collected before surgery and at weekly intervals throughout gestation. A lymphocyte microcytotoxicity assay was used to screen the serum samples from does that carried chimeric fetuses to term (n = 75). Of these 75 does, 28 parous does had presurgery serum that contained alloreactive antibodies. Nine of the 75 does had nonreactive presurgery serum, but they produced alloreactive antibody titers during gestation. Xenoreactive antibodies were detected in the pregnancy sera from 2 of the 75 does tested. Hemolytic assays confirmed the species-specificity of the xenoreactive serum from these 2 does. In view of the fact that hematopoietic cells were the only source of anti-sheep antibody stimulation in this model, we propose that fetal leukocyte trafficking does take place across the caprine placenta.  相似文献   

17.
Ubiquitylation is a key regulator of protein trafficking, and much about the functions of ubiquitin ligases, which add ubiquitin to substrates in this regulation, has recently come to light. However, a clear understanding of ubiquitin-dependent protein localization cannot be achieved without knowledge of the role of deubiquitylating enzymes (DUBs). DUBs, by definition, function downstream in ubiquitin pathways and, as such, have the potential to be the final editors of protein ubiquitylation status, thus determining substrate fate. This paper assimilates the current evidence concerning the substrates and activities of DUBs that regulate protein trafficking.  相似文献   

18.
Until recently, endocytic trafficking and its regulators were thought to function almost exclusively on membrane-bound organelles and/or vesicles containing a lipid bilayer. Recent studies have demonstrated that endocytic regulatory proteins play much wider roles in trafficking regulation and influence a variety of nonendocytic pathways, including trafficking to/from mitochondria and peroxisomes. Moreover, new studies also suggest that endocytic regulators also control trafficking to and from cellular organelles that lack membranes, such as the centrosome. Although endocytic membrane trafficking (EMT) clearly impacts pathways downstream of the centrosome, such as ciliogenesis (including transport to and from cilia), mitotic spindle formation, and cytokinesis, relatively few studies have focused on the growing role for EMT more directly on centrosome biogenesis, maintenance and control throughout cell cycle, and centrosome duplication. Indeed, a growing number of endocytic regulatory proteins have been implicated in centrosome regulation, including various Rab proteins (among them Rab11) and the leucine-rich repeat kinase 2. In this review, we will examine the relationship between centrosomes and EMT, focusing primarily on how EMT directly influences the centrosome.  相似文献   

19.
Integrins regulate cell behavior through the assembly of multiprotein complexes at the site of cell adhesion. Parvins are components of such a multiprotein complex. They consist of three members (alpha-, beta-, and gamma-parvin), form a functional complex with integrin-linked kinase (ILK) and PINCH, and link integrins to the actin cytoskeleton. Whereas alpha- and beta-parvins are widely expressed, gamma-parvin has been reported to be expressed in hematopoietic organs. In the present study, we report the expression pattern of the parvins in hematopoietic cells and the phenotypic analysis of gamma-parvin-deficient mice. Whereas alpha-parvin is not expressed in hematopoietic cells, beta-parvin is only found in myeloid cells and gamma-parvin is present in both cells of the myeloid and lymphoid lineages, where it binds ILK. Surprisingly, loss of gamma-parvin expression had no effect on blood cell differentiation, proliferation, and survival and no consequence for the T-cell-dependent antibody response and lymphocyte and dendritic cell migration. These data indicate that despite the high expression of gamma-parvin in hematopoietic cells it must play a more subtle role for blood cell homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号