首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that small mesenteric arteries from hypertensive rats have increased NOS-derived H(2)O(2) and reduced NO/cGMP signaling. We hypothesized that antihypertensive therapy lowers blood pressure through a tetrahydrobiopterin (BH(4))-dependent mechanism restoring NO/cGMP signaling and endothelial NOS (NOS3; eNOS) phosphorylation in small arteries. To test this hypothesis, small mesenteric arteries from normotensive rats (NORM), angiotensin II-infused rats (ANG), ANG rats with triple therapy (reserperine, hydrochlorothiazide, and hydralazine), or ANG rats with oral BH(4) therapy were studied. Both triple therapy and oral BH(4) therapy attenuated the rise in systolic blood pressure in ANG rats and restored NO/cGMP signaling in small arteries similarly. Triple therapy significantly increased vascular BH(4) levels and BH(4)-to-BH(2) ratio similar to ANG rats with BH(4) supplementation. Furthermore, triple therapy (but not oral BH(4) therapy) significantly increased GTP cyclohydrolase I (GTPCH I) activity in small arteries without a change in expression. NOS3 phosphorylation at Ser1177 was reduced in small arteries from ANG compared with NORM, while NOS3 phosphorylation at Ser633 and Thr495 were similar in ANG and NORM. NOS3 phosphorylation at Ser1177 was restored with triple therapy or oral BH(4) in ANG rats. In conclusion, antihypertensive therapy regulates NO/cGMP signaling in small arteries through increasing BH(4) levels and NOS3 phosphorylation at Ser1177.  相似文献   

2.
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.  相似文献   

3.
The link between endothelial nitric oxide synthase (eNOS) activation and vascular diameter during ischemia-reperfusion was investigated in the rat heart. After short (<30 min) and long (>45 min) time of ischemia conferred by coronary artery occlusion of the rats, reperfusion caused dilatation and constriction of arterioles, respectively. Partial oxygen pressure (pO2) measurement of the heart by the electrode confirmed the hyper-perfusion and no-reflow phenomena during reperfusion, as well as myocardial ischemia. The vascular diameter was correlated with phosphorylation of Akt and serine 1177 residue of eNOS, and formation of NO-bound guanylate cyclase (GC) by immuoflorescence study. Western blotting confirmed the phosphorylation of eNOS-Ser1177 depending on ischemia time. The constriction during reperfusion after 45 min of ischemia is supposedly caused by the inhibition of Akt-mediated eNOS-Ser1177 phosphorylation, which was suppressed by a PKC inhibitor chelerythrine, or ROS scavengers N-2-mercaptopropionyl glycine (MPG) and 4,5-Dihydroxy-1, 3-benzenedisulfonic acid disodium salt (Tiron). However, an endothelin receptor antagonist BQ123 alleviated the vasoconstriction by increasing NO availability but not eNOS-Ser1177 phosphorylation. Thus, vascular patency is correlated with eNOS-Ser1177 phosphorylation in association with ROS, and PKC during reperfusion. Endothelin inhibits vasodilatation by reducing NO availability during reperfusion.  相似文献   

4.
Although endothelial dysfunction deteriorates diabetic angiopathy, the mechanisms are obscure. We revealed that high glucose augmented eNOS through stimulation of eNOS mRNA in cultured BAECs. NO was decreased and O2- was increased simultaneously. NOS inhibitor, inhibited O2- release, so did NADPH oxidase inhibitor. The effects were synergistic. Both intracellular BH4 level and GTPCH1 activity were decreased by high glucose, in line with decrease of GTPCH1 mRNA. HMG-CoA reductase inhibitor, atorvastatin increased GTPCH1 mRNA and activity, and BH4 level. Conclusively, high glucose leads to eNOS dysfunction by inhibiting BH4 synthesis and atorvastatin stimulate BH4 synthesis directly, and it may work as atherogenic process.  相似文献   

5.
Patients with left-to-right shunt congenital heart disease may develop pulmonary hypertension. Perioperative mortality of these patients is high due to abnormal vasoreactivity of the pulmonary artery (PA). We studied the changes in the PA induced by high pulmonary blood flow in rats with aortocaval fistula. Eight weeks after surgery, morphological changes of the PA were studied and vasomotor function was assessed by isometric force recording. Expression of endothelial nitric oxide (NO) synthase (eNOS), VEGF, and cyclooxygenase-2 (COX-2) proteins and levels of cGMP in the PA were analyzed. Rats with high pulmonary blood flow developed pulmonary hypertension, medial thickening, and increasing of internal elastic lamina and basement membrane in the PA. When compared with sham-operated animals, rats with fistula had significantly increased contractions in the PA, whereas relaxations to acetylcholine and NO donor were reduced. Concentrations of cGMP were reduced in the PA of rats with pulmonary hypertension (18.4 +/- 3.3 vs. 9.4 +/- 1.7 pmol/mg protein; P = 0.04). The altered vasomotor function was normalized by treatment with indomethacin. The PA of rats with fistula expressed higher levels of eNOS, phosphorylated eNOS, and COX-2. Sustained high PA blood flow in rats causes pulmonary hypertension that is morphologically and functionally identical with patients with flow-induced pulmonary hypertension. Abnormal vasomotor function of the PA in these animals appears to be mediated by reduced availability and the biological effect of endogenous NO and the high production of vasoconstrictor prostanoids. Increased eNOS and phosphorylated eNOS are most likely the adaptive changes in response to an increase in PA pressure secondary to high blood flow.  相似文献   

6.
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. In the absence of the requisite eNOS cofactor tetrahydrobiopterin (BH(4)), NADPH oxidation is uncoupled from NO generation, leading to the production of superoxide. Although this phenomenon is apparent with purified enzyme, cellular studies suggest that formation of the BH(4) oxidation product, dihydrobiopterin, is the molecular trigger for eNOS uncoupling rather than BH(4) depletion alone. In the current study, we investigated the effects of both BH(4) depletion and oxidation on eNOS-derived superoxide production in endothelial cells in an attempt to elucidate the molecular mechanisms regulating eNOS oxidase activity. Results demonstrated that pharmacological depletion of endothelial BH(4) does not result in eNOS oxidase activity, whereas BH(4) oxidation gave rise to significant eNOS-oxidase activity. These findings suggest that the endothelium possesses regulatory mechanisms, which prevent eNOS oxidase activity from pterin-free eNOS. Using a combination of gene silencing and pharmacological approaches, we demonstrate that eNOS-caveolin-1 association is increased under conditions of reduced pterin bioavailability and that this sequestration serves to suppress eNOS uncoupling. Using small interfering RNA approaches, we demonstrate that caveolin-1 gene silencing increases eNOS oxidase activity to 85% of that observed under conditions of BH(4) oxidation. Moreover, when caveolin-1 silencing was combined with a pharmacological inhibitor of AKT, BH(4) depletion increased eNOS-derived superoxide to 165% of that observed with BH(4) oxidation. This study identifies a critical role of caveolin-1 in the regulation of eNOS uncoupling and provides new insight into the mechanisms through which disease-associated changes in caveolin-1 expression may contribute to endothelial dysfunction.  相似文献   

7.
Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine-citrulline conversion assay and HPLC analysis, respectively. Over a period of 4h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization.  相似文献   

8.
Soluble guanylate cyclase (sGC) is an important downstream intracellular target of nitric oxide (NO) that is produced by endothelial NO synthase (eNOS) and inducible NO synthase (iNOS). In this study, we demonstrate that sGC exists in a complex with eNOS and heat shock protein 90 (HSP90) in aortic endothelial cells. In addition, we show that in aortic smooth muscle cells, sGC forms a complex with HSP90. Formation of the sGC/eNOS/HSP90 complex is increased in response to eNOS-activating agonists in a manner that depends on HSP90 activity. In vitro binding assays with glutathione S-transferase fusion proteins that contain the alpha- or beta-subunit of sGC show that the sGC beta-subunit interacts directly with HSP90 and indirectly with eNOS. Confocal immunofluorescent studies confirm the subcellular colocalization of sGC and HSP90 in both endothelial and smooth muscle cells. Complex formation of sGC with HSP90 facilitates responses to NO donors in cultured cells (cGMP accumulation) as well as in anesthetized rats (hypotension). These complexes likely function to stabilize sGC as well as to provide directed intracellular transfer of NO from NOS to sGC, thus preventing inactivation of NO by superoxide anion and formation of peroxynitrite, which is a toxic molecule that has been implicated in the pathology of several vascular diseases.  相似文献   

9.
Tetrahydrobiopterin (BH4) is a key redox-active cofactor in endothelial isoform of NO synthase (eNOS) catalysis and is an important determinant of NO-dependent signaling pathways. BH4 oxidation is observed in vascular cells in the setting of the oxidative stress associated with diabetes. However, the relative roles of de novo BH4 synthesis and BH4 redox recycling in the regulation of eNOS bioactivity remain incompletely defined. We used small interference RNA (siRNA)-mediated “knockdown” GTP cyclohydrolase-1 (GTPCH1), the rate-limiting enzyme in BH4 biosynthesis, and dihydrofolate reductase (DHFR), an enzyme-recycling oxidized BH4 (7,8-dihydrobiopterin (BH2)), and studied the effects on eNOS regulation and biopterin metabolism in cultured aortic endothelial cells. Knockdown of either DHFR or GTPCH1 attenuated vascular endothelial growth factor (VEGF)-induced eNOS activity and NO production; these effects were recovered by supplementation with BH4. In contrast, supplementation with BH2 abolished VEGF-induced NO production. DHFR but not GTPCH1 knockdown increased reactive oxygen species (ROS) production. The increase in ROS production seen with siRNA-mediated DHFR knockdown was abolished either by simultaneous siRNA-mediated knockdown of eNOS or by supplementing with BH4. In contrast, addition of BH2 increased ROS production; this effect of BH2 was blocked by BH4 supplementation. DHFR but not GTPCH1 knockdown inhibited VEGF-induced dephosphorylation of eNOS at the inhibitory site serine 116; these effects were recovered by supplementation with BH4. These studies demonstrate a striking contrast in the pattern of eNOS regulation seen by the selective modulation of BH4 salvage/reduction versus de novo BH4 synthetic pathways. Our findings suggest that the depletion of BH4 is not sufficient to perturb NO signaling, but rather that concentration of intracellular BH2, as well as the relative concentrations of BH4 and BH2, together play a determining role in the redox regulation of eNOS-modulated endothelial responses.Regulation of endothelial nitric oxide (NO)2 production represents a critical mechanism for the modulation of vascular homeostasis. NO is released by endothelial cells in response to diverse humoral, neural, and mechanical stimuli (14). Endothelial cell-derived NO activates guanylate cyclase in vascular smooth muscle cells, leading to increased levels of cGMP and to smooth muscle relaxation. Blood platelets represent another key target for the actions of endothelium-derived NO (5): platelet aggregation is inhibited by NO-induced guanylate cyclase activation. Many other effects of NO have been identified in cultured vascular cells and in vascular tissues, including the regulation of apoptosis, cell adhesion, angiogenesis, thrombosis, vascular smooth muscle proliferation, and atherogenesis, among other cellular responses and (patho)physiological processes.The endothelial isoform of NO synthase (eNOS) is a membrane-associated homodimeric 135-kDa protein that is robustly expressed in endothelial cells (2, 4, 6, 7). Similar to all the mammalian NOS isoforms, eNOS functions as an obligate homodimer that includes a cysteine-complex Zn2+ (zinc-tetrathiolate) at the dimer interface (810). eNOS is a Ca2+/calmodulin-dependent enzyme that is activated in response to the stimulation of a variety of Ca2+-mobilizing cell surface receptors in vascular endothelium and in cardiac myocytes. The activity of eNOS is also regulated by phosphorylation at multiple sites (11) that are differentially modulated following the activation of cell surface receptors by agonists such as insulin and vascular endothelial growth factor (VEGF) (12). The phosphorylation of eNOS at Ser-1179 activates eNOS, but phosphorylation at Thr-497 or Ser-116 is associated with inhibition of eNOS activity (1317). eNOS is reversibly targeted to plasmalemmal caveolae as a consequence of the protein''s N-myristoylation and thiopalmitoylation. The generation of NO by eNOS requires several redox-active cofactors, including nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), calmodulin, and tetrahydrobiopterin (BH4), which have key roles in the electron flow required for eNOS catalysis. If the flow of electrons within eNOS is disrupted, the enzyme is uncoupled from NO production and other redox-active products are generated, including hydrogen peroxide and superoxide anion radical (18, 19).In vascular disease states such as diabetes, endothelial dysfunction is characterized by a decrease in NO bioactivity and by a concomitant increase in superoxide formation, while eNOS mRNA and protein levels are maintained or even increased. “Uncoupled” eNOS generates reactive oxygen species (ROS), shifting the nitroso-redox balance and having adverse consequences in the vascular wall (20). Several enzymes expressed in vascular tissues contribute to the production and efficient degradation of ROS, and an enhanced activity of oxidant enzymes and/or reduced activity of antioxidant enzymes may cause oxidative stress. Various agonists, pathological conditions, and therapeutic interventions lead to modulated expression and function of oxidant and antioxidant enzymes. However, the intimate relationship between intracellular redox state, eNOS regulation, and NO bioavailability remains incompletely characterized.BH4 is a key redox-active cofactor for activity of all NOS enzymes (21). The exact role of BH4 in NOS catalysis is not yet completely defined, but this cofactor appears to facilitate electron transfer from the eNOS reductase domain and maintains the heme prosthetic group of the enzyme in its redox-active form (18, 22, 23). Moreover, BH4 promotes formation of active NOS homodimers (24) and inhibits the formation of hydrogen peroxide or superoxide by uncoupled eNOS (18, 19). It has been reported that the endothelial dysfunction associated with diabetes is accompanied a decrease in the abundance of bioactive BH4. Supplementation with BH4 has been shown to improve endothelial function in the models of diabetes and hypertension (25, 26, 27). Moreover, BH4 oxidation is seen in vascular cells in the setting of oxidative stress associated with diabetes (28) and hypertension (29).BH4 can be formed either by a de novo biosynthetic pathway or by a salvage pathway. Guanosine triphosphate cyclohydrolase-1 (GTPCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate. BH4 is generated by further steps catalyzed by 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase (30). GTPCH1 appears to be the rate-limiting enzyme in BH4 biosynthesis; overexpression of GTPCH1 is sufficient to augment BH4 levels in cultured endothelial cells (31). On the other hand, dihydrofolate reductase (DHFR) catalyzes the regeneration of BH4 from its oxidized form, 7,8-dihydrobiopterin (BH2), in several cell types (30, 32). DHFR is mainly involved in folate metabolism and converts inactive BH2 back to BH4 and plays an important role in the metabolism of exogenously administered BH4. However, the relative contributions of endothelial GTPCH1 and DHFR to the modulation of eNOS-dependent pathways are incompletely understood.In these studies, we have used siRNA-mediated “knockdown” of GTPCH1 and DHFR to explore the relative roles of BH4 synthesis and recycling in the modulation of eNOS bioactivity, as well as in the regulation of NO-dependent signaling pathways in endothelial cells.  相似文献   

10.
Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the present study, we hypothesize that loss of tetrahydrobiopterin (BH4), a critical cofactor for eNOS, induces uncoupled eNOS activity and impairs angiogenesis in PPHN. Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with PPHN (HTFL-PAEC) or control lambs (NFL-PAEC) were used to investigate the cellular mechanisms impairing angiogenesis in PPHN. Cellular mechanisms were examined with respect to BH4 levels, GTP-cyclohydrolase-1 (GCH-1) expression, eNOS dimer formation, and eNOS-heat shock protein 90 (hsp90) interactions under basal conditions and after sepiapterin (Sep) supplementation. Cellular levels of BH4, GCH-1 expression, and eNOS dimer formation were decreased in HTFL-PAEC compared with NFL-PAEC. Sep supplementation decreased apoptosis and increased in vitro angiogenesis in HTFL-PAEC and ex vivo pulmonary artery sprouting angiogenesis. Sep also increased cellular BH4 content, NO production, eNOS dimer formation, and eNOS-hsp90 association and decreased the superoxide formation in HTFL-PAEC. These data demonstrate that Sep improves NO production and angiogenic potential of HTFL-PAEC by recoupling eNOS activity. Increasing BH4 levels via Sep supplementation may be an important therapy for improving eNOS function and restoring angiogenesis in PPHN.  相似文献   

11.
Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability.In vascular disease states such as atherosclerosis and diabetes, endothelial nitric oxide (NO) bioactivity is reduced, and oxidative stress is increased, resulting in endothelial dysfunction. It has become apparent that enzymatic “coupling” of endothelial NO synthase by its cofactor tetrahydrobiopterin (BH4)2 plays a key role in maintaining endothelial function. Indeed, the balance between NO and superoxide production by eNOS appears to be determined by the availability of BH4 versus the abundance of 7,8-dihydrobiopterin (BH2, that is inactive for NOS cofactor function and may compete with BH4 for NOS binding (1). Intracellular biopterin levels are regulated principally by the activity of the de novo biosynthetic pathway (Fig. 1). Guanosine triphosphate cyclohydrolase I (GTPCH; EC 3.5.4.16) catalyzes the formation of dihydroneopterin triphosphate from GTP, and BH4 is generated by two further steps through 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. GTPCH appears to be the rate-limiting enzyme in BH4 biosynthesis, and overexpression of GTPCH is sufficient to augment BH4 levels in cultured endothelial cells (2). Electron paramagnetic resonance spectroscopy studies have shown that BH4 both stabilizes and donates electrons to the ferrous-dioxygen complex in the oxygenase domain, as the initiating step of l-arginine oxidation (35). In this reaction BH4 forms the protonated trihydrobiopterin cation radical, which is subsequently reduced by electron transfer from NOS flavins. When BH4 availability is limiting, electron transfer from NOS flavins becomes uncoupled from l-arginine oxidation, eNOS generates superoxide rather than NO, BH4 becomes oxidized to catalytically incompetent BH2, and a futile feed-forward cascade of BH4 destruction proceeds (1). Recent studies reveal that BH4 and BH2 bind eNOS with equal affinity and that BH2 can efficiently replace eNOS-bound BH4, resulting in eNOS uncoupling (6). Indeed, we have previously shown that the relative abundance of eNOS versus BH4 together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling (7), a hypothesis supported by a recent publication where BH2 levels are elevated after exposure of bovine aortic endothelial cells to DHFR-specific siRNA (8). Thus, mechanisms that regulate the BH4:BH2 ratio independently of overall biopterin levels may play an equally important role in regulating eNOS coupling as the well established role of GTCPH, which regulates de novo BH4 biosynthesis. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR; EC 1.5.1.3) can reduce BH2, thus regenerating BH4 (9, 10). It is, therefore, likely that net BH4 bioavailability within the endothelium reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. In human liver extracts DHFR has been shown to reduce BH2 back to BH4 as part of the salvage pathway for biopterin synthesis (11). However, the role of this pathway and the extent to which it regulates intracellular BH4 levels in vivo remains unknown. Recent work by Chalupsky and Cai (2) investigated the functionality of endothelial DHFR in cultured bovine aortic endothelial cells. Exposure to angiotensin II down-regulated DHFR expression, decreased BH4 levels, and increased eNOS uncoupling, which was restored by overexpression of DHFR (2). A recent study also suggests that perturbation of BH4 metabolism differentially affects eNOS phosphorylation sites. Knockdown of DHFR by siRNA inhibits vascular endothelial growth factor-induced dephosphorylation of eNOS at Ser-116, an effect that is completely recovered by the addition of exogenous BH4 (8). However, the requirement for DHFR in regulating intracellular BH4 homeostasis and the quantitative relationships that relate BH4 de novo synthesis versus BH4 recycling to eNOS coupling remain uncertain. Accordingly, we sought to address these questions using both pharmacologic and genetic manipulation of DHFR activity and related these interventions to effects on eNOS coupling. We manipulated DHFR in both endothelial cells and in novel cell lines that stably express an eNOS-GFP fusion protein and where expression of human GTPCH can be regulated by doxycycline in order to test the effects of variations in intracellular BH4 biosynthesis (7). We report that although GTPCH is the key regulator of the total amount of intracellular biopterins, DHFR is critical to eNOS function by determining BH4:BH2 ratio and, thus, in maintaining eNOS coupling. In particular, DHFR is important in preventing “self-propagated” eNOS uncoupling in conditions of low total biopterin levels, when eNOS-dependent oxidation of BH4 that would further exacerbate eNOS uncoupling can be rescued by DHFR.Open in a separate windowFIGURE 1.Schematic representation of the BH4 recycling pathway and eNOS coupling. BH4 is synthesized from GTP via a series of reactions involving GTPCH, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase (SR) and DHFR. DHFR activity can be inhibited by MTX. GFRP, GTP cyclohydrolase feedback regulatory protein. PTPS, 6-pyruvoyl-tetrahydropterin synthase.  相似文献   

12.
Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2 -.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01). VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01). Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.  相似文献   

13.
Previously, we have shown that pulmonary arterial endothelial cells (PAECs) isolated from fetal lambs produce significant levels of nitric oxide (NO) but minimal superoxide upon stimulation, whereas PAECs isolated from 4-wk-old lambs produce significant amounts of both NO and superoxide. These data indicated that a certain degree of uncoupling of endothelial NO synthase (eNOS) occurs in PAECs during postnatal development. In this study, we sought to extend these studies by investigating the potential role of heat shock protein 90 (HSP90) in eNOS coupling. Western blot analyses revealed higher HSP90 expression in PAECs isolated from fetal compared with 4-wk-old lambs, whereas the analysis of recombinant human eNOS activation in vitro in the presence of HSP90 indicated that HSP90 significantly augmented NO production while inhibiting superoxide generation from eNOS. To further investigate whether HSP90 could be involved in uncoupling of eNOS in PAECs isolated from 4-wk-old lambs, we utilized an adenovirus to overexpress HSP90. We found that overexpression of HSP90 significantly increased the shear-stimulated association of HSP90 with eNOS and led to significant increases in NO production and reduced NOS-dependent superoxide generation. Conversely, the exposure of PAECs isolated from fetal lambs to the HSP90 inhibitor radicicol led to significant decreases in eNOS-HSP90 interactions, decreased shear-stimulated NO generation, and increased NOS-dependent superoxide production indicative of eNOS uncoupling. Finally, we examined eNOS-HSP90 interactions in our lamb model of pulmonary hypertension associated with increased pulmonary blood flow (shunt). Our data indicate that HSP90-eNOS interactions were decreased in shunt lambs and that this was associated with decreased NO generation and an increase in eNOS-dependent generation of superoxide. Together, our data support a significant role for HSP90 in promoting NO generation and inhibiting superoxide generation by eNOS and indicate that the disruption of this interaction may be involved in the endothelial dysfunction associated with pulmonary hypertension.  相似文献   

14.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by endothelial nitric oxide synthase (eNOS), and endothelial BH4 bioavailability is a critical factor in regulating the balance between NO and superoxide production (eNOS coupling). Biosynthesis of BH4 is determined by the activity of GTP-cyclohydrolase I (GTPCH). However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but whether DHFR is functionally important in maintaining eNOS coupling remains unclear. To investigate the mechanism by which DHFR might regulate eNOS coupling in vivo, we treated wild-type, BH4-deficient (hph-1), and GTPCH-overexpressing (GCH-Tg) mice with methotrexate (MTX), to inhibit BH4 recycling by DHFR. MTX treatment resulted in a striking elevation in BH2 and a decreased BH4:BH2 ratio in the aortas of wild-type mice. These effects were magnified in hph-1 but diminished in GCH-Tg mice. Attenuated eNOS activity was observed in MTX-treated hph-1 but not wild-type or GCH-Tg mouse lung, suggesting that inhibition of DHFR in BH4-deficient states leads to eNOS uncoupling. Taken together, these data reveal a key role for DHFR in regulating the BH4 vs BH2 ratio and eNOS coupling under conditions of low total biopterin availability in vivo.  相似文献   

15.
Tetrahydrobiopterin (BH4), which is an essential cofactor for nitric oxide synthase (NOS), is generally accepted as an important molecular target for oxidative stress. This study examined whether hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species (ROS), affects the BH4 level in vascular endothelial cells (ECs). Interestingly, the addition of H(2)O(2) to ECs markedly increased the BH4 level, but not its oxidized forms. The H(2)O(2)-induced increase in the BH4 level was blocked by the inhibitor of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of BH4 synthesis. Moreover, H(2)O(2) induced the expression of GTPCH mRNA, and the inhibitors of protein synthesis blocked the H(2)O(2)-induced increase in the BH4 level. The expression of the inducible isoform of NOS (iNOS) was slightly induced by the treatment with H(2)O(2). Additionally, the L-citrulline formation from L-arginine, which is the marker for NO synthesis, was stimulated by the treatment with H(2)O(2), and the H(2)O(2)-induced L-citrulline formation was strongly attenuated by NOS or GTPCH inhibitor. These results suggest that H(2)O(2) induces BH4 synthesis via the induction of GTPCH, and the increased BH4 is coupled with NO production by coinduced iNOS. H(2)O(2) appears to be one of the important signaling molecules to regulate the BH4-NOS system.  相似文献   

16.
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. With oxidative stress, the critical cofactor BH(4) is depleted, and NADPH oxidation is uncoupled from NO generation, leading to production of (O(2)*). Although phosphorylation of eNOS regulates in vivo NO generation, the effects of phosphorylation on eNOS coupling and O(2)* generation are unknown. Therefore, we phosphorylated recombinant BH(4)-free eNOS in vitro using native kinases and determined O(2)* generation using EPR spin trapping. Phosphorylation of Ser-1177 by Akt led to an increase (>50%) in maximal O(2)* generation from eNOS. Moreover, Ser-1177 phosphorylation greatly altered the Ca(2+) sensitivity of eNOS, such that O(2)* generation became largely Ca(2+)-independent. In contrast, phosphorylation of eNOS at Thr-495 by protein kinase Calpha (PKCalpha) had no effect on maximum activity or calcium sensitivity but decreased calmodulin binding and increased association with caveolin. In endothelial cells, eNOS-dependent O(2)* generation was stimulated by vascular endothelial growth factor that induced phosphorylation of Ser-1177. With PKC activation that led to phosphorylation of Thr-495, no inhibition of O(2)* generation occurred. As such, phosphorylation of eNOS at Ser-1177 is pivotal in the direct regulation of O(2)* and NO generation, altering both the Ca(2+) sensitivity of the enzyme and rate of product formation, whereas phosphorylation of Thr-495 indirectly affects this process through regulation of the calmodulin and caveolin interaction. Thus, Akt-mediated phosphorylation modulates eNOS uncoupling and greatly increases O(2)* generation from the enzyme at low Ca(2+) concentrations, and PKCalpha-mediated phosphorylation alters the sensitivity of the enzyme to other negative regulatory signals.  相似文献   

17.
We examined structure, composition, and endothelial function in cerebral arterioles after 4 wk of chronic renal failure (CRF) in a well-defined murine model (C57BL/6J and apolipoprotein E knockout female mice). We also determined quantitative expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (on serine 1177 and threonine 495), and caveolin-1; quantitative expression of markers of vascular inflammation or oxidative stress [Rock-1, Rock-2, VCAM-1, and peroxisome proliferator-activated receptor-γ (PPARγ)]; and the plasma concentration of L-arginine and asymmetric dimethylarginine (ADMA). Our hypothesis was that endothelial function would be impaired in cerebral arterioles during CRF following either a decrease in NO production (through alteration of eNOS expression or regulation) or an increase in NO degradation (due to oxidative stress or vascular inflammation). Endothelium-dependent relaxation was impaired during CRF, but endothelium-independent relaxation was not. CRF had no effect on cerebral arteriolar structure and composition. Quantitative expressions of eNOS, eNOS phosphorylated on serine 1177, caveolin-1, Rock-1, Rock-2, and VCAM-1 were similar in CRF and non-CRF mice. In contrast, quantitative expression of PPARγ (which exercises a protective role on blood vessels) was significantly lower in CRF mice, whereas quantitative expression of eNOS phosphorylated on the threonine 495 (the inactive form of eNOS) was significantly higher. Lastly, the plasma concentration of ADMA (a uremic toxin and an endogenous inhibitor of eNOS) was elevated and plasma concentration of L-arginine was low in CRF. In conclusion, endothelial function is impaired in a mouse model of early stage CRF. These alterations may be related (at least in part) to a decrease in NO production.  相似文献   

18.
Recently, peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been reported to increase endothelial NO, but the signaling mechanisms involved are unknown. Using troglitazone, a PPARgamma ligand known as an antidiabetic compound, we investigated the molecular mechanism of its effect on NO production in bovine aortic endothelial cells. Troglitazone increased endothelial NO production in a dose- and time-dependent manner with no alteration in endothelial nitric-oxide synthase (eNOS) expression. The maximal increase ( approximately 3.1-fold) was achieved with 20 microm troglitazone treatment for 12 h, and this increase was accompanied by increases in the expression of vascular endothelial growth factor (VEGF) and its receptor, KDR/Flk-1, and in Akt phosphorylation. Analysis with antibodies specific for each phosphorylated site demonstrated that troglitazone (20 microm treatment for 12 h) significantly increased both the phosphorylation of Ser(1179) of eNOS (eNOS-Ser(1179)) and the dephosphorylation of eNOS-Ser(116) but did not alter eNOS-Thr(497) phosphorylation. Treatment with anti-VEGF antibody to scavenge the increased VEGF induced by troglitazone partially inhibited troglitazone-stimulated NO production. This was accompanied by the attenuation of troglitazone-stimulated increases in the phosphorylation of Akt and eNOS-Ser(1179) with no alteration in eNOS-Ser(116) dephosphorylation. We also found that bisphenol A diglycidyl ether, a PPARgamma antagonist, partially inhibited troglitazone-stimulated NO production with a concomitant reduction in VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation but with no alteration in eNOS-Ser(116) dephosphorylation induced by troglitazone. Taken together, our results demonstrate that prolonged treatment with troglitazone increases endothelial NO production by at least two independent signaling pathways: PPARgamma-dependent, VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation and PPARgamma-independent, eNOS-Ser(116) dephosphorylation.  相似文献   

19.
Synthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a required cofactor for inducible nitric-oxide synthase (iNOS) activity, is usually coordinately regulated with iNOS expression. In C6 glioma cells, tumor necrosis factor-alpha (TNF-alpha) concomitantly potentiated the stimulation of nitric oxide (NO) and BH(4) production induced by IFN-gamma and interleukin-1beta. Expression of both iNOS and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the BH(4) biosynthetic pathway, was also markedly increased, as were their activities and protein levels. Ceramide, a sphingolipid metabolite, may mediate some of the actions of TNF-alpha. Indeed, we found that bacterial sphingomyelinase, which hydrolyzes sphingomyelin and increases endogenous ceramide, or the cell permeable ceramide analogue, C(2)-ceramide, but not C(2)-dihydroceramide (N-acetylsphinganine), significantly mimicked the effects of TNF-alpha on NO production and iNOS expression and activity in C6 cells. Surprisingly, although TNF-alpha increased BH(4) synthesis and GTPCH activity, neither BH(4) nor GTPCH expression was affected by C(2)-ceramide or sphingomyelinase in IFN-gamma- and interleukin-1beta-stimulated cells. It is likely that increased BH(4) levels results from increased GTPCH protein and activity in vivo rather than from reduced turnover of BH(4), because the GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, blocked cytokine-stimulated BH(4) accumulation. Moreover, expression of the GTPCH feedback regulatory protein, which if decreased might increase GTPCH activity, was not affected by TNF-alpha or ceramide. Treatment with the antioxidant pyrrolidine dithiocarbamate, which is known to inhibit NF-kappaB and sphingomyelinase in C6 cells, or with the peptide SN-50, which blocks translocation of NF-kappaB to the nucleus, inhibited TNF-alpha-dependent iNOS mRNA expression without affecting GTPCH mRNA levels. This is the first demonstration that cytokine-stimulated iNOS and GTPCH expression, and therefore NO and BH(4) biosynthesis, may be regulated by discrete pathways. As BH(4) is also a cofactor for the aromatic amino acid hydroxylases, discovery of distinct mechanisms for regulation of BH(4) and NO has important implications for its specific functions.  相似文献   

20.
Endothelial nitric oxide (NO) synthase (eNOS) is regulated by heat shock protein 90 (HSP90), a heat-inducible protein; however, the effect of heat shock on eNOS expression and eNO release is unknown. Bovine aortic endothelial cells were incubated for 1 h at 37 degrees C, 42 degrees C, or 45 degrees C and cell lysates were evaluated with the use of Western blotting. We observed a 2.1 +/- 0.1-fold increase in eNOS protein content, but no change in HSP90 content, HSP70 content, or HSP90/eNOS association, 24 h after heat shock at 42 degrees C. We also observed a 7.7 +/- 1.5-fold increase in HSP70 protein content, but did not observe a change in eNOS or HSP90 24 h after heat shock at 45 degrees C. eNOS activity and maximal bradykinin-stimulated NO release was significantly increased 24 h after heat shock at 42 degrees C. Heat shock in rats (core temperature: 42 degrees C, 15 min) resulted in a significant increase in aortic eNOS, HSP90, and HSP70 protein content. The aorta from heat-shocked rats exhibited a decreased maximal contractile response to phenylephrine, which was abolished by preincubation with NG-nitro-l-arginine. We conclude that prior heat shock is a physical stimulus of increased eNOS expression and is associated with an increase in eNOS activity, agonist-stimulated NO release, and a decreased vasoconstrictor response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号