首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proteins rarely function in isolation but they form part of complex networks of interactions with other proteins within or among cells. The importance of a particular protein for cell viability is directly dependent upon the number of interactions where it participates and the function it performs: the larger the number of interactions of a protein the greater its functional importance is for the cell. With the advent of genome sequencing and "omics" technologies it became feasible conducting large-scale searches for protein interacting partners. Unfortunately, the accuracy of such analyses has been underwhelming owing to methodological limitations and to the inherent complexity of protein interactions. In addition to these experimental approaches, many computational methods have been developed to identify protein-protein interactions by assuming that interacting proteins coevolve resulting from the coadaptation dynamics between the amino acids of their interacting faces. We review the main technological advances made in the field of interactomics and discuss the feasibility of computational methods to identify protein-protein interactions based on the estimation of coevolution. As proof-of-concept, we present a classical case study: the interactions of cell surface proteins (receptors) and their ligands. Finally, we take this discussion one step forward to include interactions between organisms and species to understand the generation of biological complexity. Development of technologies for accurate detection of protein-protein interactions may shed light on processes that go from the fine-tuning of pathways and metabolic networks to the emergence of biological complexity.  相似文献   

2.
Global protein function prediction from protein-protein interaction networks   总被引:20,自引:0,他引:20  
Determining protein function is one of the most challenging problems of the post-genomic era. The availability of entire genome sequences and of high-throughput capabilities to determine gene coexpression patterns has shifted the research focus from the study of single proteins or small complexes to that of the entire proteome. In this context, the search for reliable methods for assigning protein function is of primary importance. There are various approaches available for deducing the function of proteins of unknown function using information derived from sequence similarity or clustering patterns of co-regulated genes, phylogenetic profiles, protein-protein interactions (refs. 5-8 and Samanta, M.P. and Liang, S., unpublished data), and protein complexes. Here we propose the assignment of proteins to functional classes on the basis of their network of physical interactions as determined by minimizing the number of protein interactions among different functional categories. Function assignment is proteome-wide and is determined by the global connectivity pattern of the protein network. The approach results in multiple functional assignments, a consequence of the existence of multiple equivalent solutions. We apply the method to analyze the yeast Saccharomyces cerevisiae protein-protein interaction network. The robustness of the approach is tested in a system containing a high percentage of unclassified proteins and also in cases of deletion and insertion of specific protein interactions.  相似文献   

3.
Proteins do not function in isolation; it is their interactions with one another and also with other molecules (e.g. DNA, RNA) that mediate metabolic and signaling pathways, cellular processes, and organismal systems. Due to their central role in biological function, protein interactions also control the mechanisms leading to healthy and diseased states in organisms. Diseases are often caused by mutations affecting the binding interface or leading to biochemically dysfunctional allosteric changes in proteins. Therefore, protein interaction networks can elucidate the molecular basis of disease, which in turn can inform methods for prevention, diagnosis, and treatment. In this chapter, we will describe the computational approaches to predict and map networks of protein interactions and briefly review the experimental methods to detect protein interactions. We will describe the application of protein interaction networks as a translational approach to the study of human disease and evaluate the challenges faced by these approaches.

What to Learn in This Chapter

  • Experimental and computational methods to detect protein interactions
  • Protein networks and disease
  • Studying the genetic and molecular basis of disease
  • Using protein interactions to understand disease
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

4.
Yeast hybrid systems have been widely used due to their convenience and low cost. Based on these systems, many methods have been developed to analyze protein–protein, protein–DNA and protein–RNA interactions. In this paper, we are reviewing these different yeast hybrid systems. According to the number of hybrid proteins, yeast hybrid systems can be divided into three categories, yeast one-hybrid, yeast two-hybrid and yeast three-hybrid systems. Alternatively, yeast hybrid systems can be categorized according to the subcellular localization of the protein interaction process in the cell into nuclear protein–protein interactions, cytosol protein–protein interactions and membrane protein–protein interactions. Throughout the review, we focus on the progress and limitations of each yeast hybrid system over the recent years.  相似文献   

5.
Thermodynamic stability of a protein at elevated temperatures is a key factor for thermostable enzymes to catalyze their specific reactions. Yet our understanding of biological determinants of thermostability is far from complete. Many different atomistic factors have been suggested as possible means for such proteins to preserve their activity at high temperatures. Among these factors are specific local interatomic interactions or enrichment of specific amino acid types. The case of glycosyl hydrolase family endoglucanase of Trichoderma reesei defies current hypotheses for thermostability because a single mutation far from the active site (A35?V) converts this mesostable protein into a thermostable protein without significant change in the protein structure. This substantial change in enzymatic activity cannot be explained on the basis of local intramolecular interactions alone. Here we present a more global view of the induced thermostability and show that the A35?V mutation affects the underlying structural rigidity of the whole protein via a number of long-range, non-local interactions. Our analysis of this structure reveals a precisely tuned, rigid network of atomic interactions. This cooperative, allosteric effect promotes the transformation of this mesostable protein into a thermostable one.  相似文献   

6.
Thermodynamic stability of a protein at elevated temperatures is a key factor for thermostable enzymes to catalyze their specific reactions. Yet our understanding of biological determinants of thermostability is far from complete. Many different atomistic factors have been suggested as possible means for such proteins to preserve their activity at high temperatures. Among these factors are specific local interatomic interactions or enrichment of specific amino acid types. The case of glycosyl hydrolase family endoglucanase of Trichoderma reesei defies current hypotheses for thermostability because a single mutation far from the active site (A35?V) converts this mesostable protein into a thermostable protein without significant change in the protein structure. This substantial change in enzymatic activity cannot be explained on the basis of local intramolecular interactions alone. Here we present a more global view of the induced thermostability and show that the A35?V mutation affects the underlying structural rigidity of the whole protein via a number of long-range, non-local interactions. Our analysis of this structure reveals a precisely tuned, rigid network of atomic interactions. This cooperative, allosteric effect promotes the transformation of this mesostable protein into a thermostable one.  相似文献   

7.
With the increasing amount of biological data available, automated methods for information retrieval become necessary. We employed computer-assisted text mining to retrieve all protein-protein interactions for nuclear receptors from MEDLINE in a systematic way. A dictionary of protein names and of terms denoting interactions was generated, and trioccurrences of two protein names and one interaction term in one sentence were retrieved. Abstracts containing at least one such trioccurrence were manually checked by biologists to select the relevant interactions out of the automatically extracted data.In total, 4360 abstracts were retrieved containing data on protein interactions for nuclear receptors. The resulting database contains all reported protein interactions involving nuclear receptors from 1966 to September 2001. Remarkably, the annual increase in number of reported interactors for nuclear receptors has been following an exponential growth curve in the years 1991 to 2001.Apparent in the data set is the high complexity of protein interactions for nuclear receptors. The number of interactions correlates with the number of published papers for a given receptor, suggesting that the number of reported interactors is a reflection of the intensity of research dedicated to a given receptor. Indeed, comparison of the retrieved data to a systematic yeast two-hybrid-based interaction analysis suggests that most NRs are similar with respect to the number of interacting proteins. The data set obtained serves as a source for information on NR interactions, as well as a reference data set for the improvement of advanced text-mining methods.  相似文献   

8.
MOTIVATION: Protein interactions are of biological interest because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Domains are the building blocks of proteins; therefore, proteins are assumed to interact as a result of their interacting domains. Many domain-based models for protein interaction prediction have been developed, and preliminary results have demonstrated their feasibility. Most of the existing domain-based methods, however, consider only single-domain pairs (one domain from one protein) and assume independence between domain-domain interactions. RESULTS: In this paper, we introduce a domain-based random forest of decision trees to infer protein interactions. Our proposed method is capable of exploring all possible domain interactions and making predictions based on all the protein domains. Experimental results on Saccharomyces cerevisiae dataset demonstrate that our approach can predict protein-protein interactions with higher sensitivity (79.78%) and specificity (64.38%) compared with that of the maximum likelihood approach. Furthermore, our model can be used to infer interactions not only for single-domain pairs but also for multiple domain pairs.  相似文献   

9.
Structural genomics projects have revealed structures for a large number of proteins of unknown function. Understanding the interactions between these proteins and their ligands would provide an initial step in their functional characterization. Binding site identification methods are a fast and cost-effective way to facilitate the characterization of functionally important protein regions. In this review we describe our recently developed methods for binding site identification in the context of existing methods. The advantage of energy-based approaches is emphasized, since they provide flexibility in the identification and characterization of different types of binding sites.  相似文献   

10.
The late Prof. Tatsuo Miyazawa was an outstanding physical chemist, who established a number of spectroscopic methods to analyse the structures of proteins, peptides and nucleotides, and used them to understand molecular functions. He developed an infrared spectroscopic method to quantitatively analyse the secondary structures, α-helices and β-strands, of proteins. He successfully utilized nuclear magnetic resonance (NMR) methods to determine the conformations of peptides and proteins, particularly with respect to the interactions with their target molecules, which served as a solid basis for the wide range of applications of NMR spectroscopy to life science research. For example, he found that physiologically active peptides are randomly flexible in solution, but assume a particular effective conformation upon binding to their functional environments, such as membranes. He also used NMR spectroscopy to quantitatively analyse the conformer equilibrium of nucleotides, and related the dynamic properties of the modified nucleosides naturally-occurring in transfer ribonucleic acids (tRNAs) to their roles in correct codon recognition in protein synthesis. Furthermore, he studied the mechanisms of protein biosynthesis systems, including tRNA and aminoacyl-tRNA synthetases. Inspired by the structural mechanism of amino acid recognition by aminoacyl-tRNA synthetases, as revealed by NMR spectroscopy, he initiated a new research area in which non-natural amino acids are site-specifically incorporated into proteins to achieve novel protein functions (alloprotein technology).  相似文献   

11.
12.
13.
蛋白质相互作用的生物信息学研究进展   总被引:2,自引:0,他引:2  
生命过程的分子基础在于生物分子之间的相互作用,其中蛋白质分子之间的相互作用占有极其重要的地位。研究蛋白质相互作用对于理解生命的真谛、探讨致病微生物的致病机理,以及研究新药提高人们的健康水平具有重要的作用。用生物信息学的方法研究蛋白质的相互作用已经取得了许多重要的成果,但也有很多问题还需解决。本文从蛋白质相互作用的数据库、预测方法、可预测蛋白质相互作用的网上服务、蛋白质相互作用网络等几方面,对蛋白质相互作用的生物信息学研究成果及其存在的问题做了概述。  相似文献   

14.
Recently a number of computational approaches have been developed for the prediction of protein–protein interactions. Complete genome sequencing projects have provided the vast amount of information needed for these analyses. These methods utilize the structural, genomic, and biological context of proteins and genes in complete genomes to predict protein interaction networks and functional linkages between proteins. Given that experimental techniques remain expensive, time-consuming, and labor-intensive, these methods represent an important advance in proteomics. Some of these approaches utilize sequence data alone to predict interactions, while others combine multiple computational and experimental datasets to accurately build protein interaction maps for complete genomes. These methods represent a complementary approach to current high-throughput projects whose aim is to delineate protein interaction maps in complete genomes. We will describe a number of computational protocols for protein interaction prediction based on the structural, genomic, and biological context of proteins in complete genomes, and detail methods for protein interaction network visualization and analysis.  相似文献   

15.
Optimizing the affinity and specificity of proteins with molecular display   总被引:1,自引:0,他引:1  
Affinity maturation of receptor-ligand interactions represents an important area of academic and pharmaceutical research. Improving affinity and specificity of proteins can tailor potency for both in vivo and in vitro applications. A number of different display platforms including phage display, bacterial and yeast display, ribosome display, and mRNA display can optimize protein affinity and specificity. Here, we will review the advantages and disadvantages of these molecular display methods with a focus on their suitability for protein affinity maturation.  相似文献   

16.
O'Toole N  Vakser IA 《Proteins》2008,71(1):144-152
Characterization of intermolecular energy landscapes in protein-protein interactions is important for understanding the mechanisms of these interactions as well as for designing better protein docking methods. A simplified representation of the landscape was used for a systematic study of its large-scale characteristics in a large nonredundant dataset of protein complexes. The focus of the study is on the basic features of the low-resolution energy basins and their distribution on the landscape. The results clearly show that, in general, the number of such basins is small, these basins are well formed, correlated with actual binding modes, and the pattern of basins distribution depends on the type of the complex. For docking studies, the results suggest that adequate starting points for the structural refinement are detectable by low-resolution procedures and the number of such starting points is relatively small.  相似文献   

17.
A large set of protein structures resolved by X-ray or NMR techniques has been extracted from the Protein Data Bank and analyzed using statistical methods. In particular, we investigate the interactions between side chains and the interactions between solvent and side chains, pointing out on the possibility of including the solvent as part of a knowledge-based potential. The solvent-residue contacts are accounted for on the basis of the Voronoi's polyhedron analysis. Our investigation confirms the importance of hydrophobic residues in determining the protein stability. We observe that in general hydrophobic-hydrophobic interactions and, more specifically, aromatic-aromatic contacts tend to be increasingly distally separated in the primary sequence of proteins, thus connecting distinct secondary structure elements. A simple relation expressing the dependence of the protein free energy by the number of residues is proposed. Such a relation includes both the residue-residue and the solvent-residue contributions. The former is dominant for large size proteins, whereas for small sizes (number of residues less than 100) the two terms are comparable. Gapless threading experiments show that the solvent-residue knowledge-based potential yields a significant contribution with respect to discriminating the native structure of proteins. Such contribution is important especially for proteins of small size and is similar to that given by the most favorable residue-residue knowledge-based potential referring to hydrophobic-hydrophobic interactions such as isoleucine-leucine. In general, the inclusion of the solvent-residue interaction produces a relevant increase of the free energy gap between the native structures and decoys.  相似文献   

18.
The intimate involvement of carbohydrate–protein interactions in a number of important biological processes has prompted several research efforts towards developing new methods of investigating these glycobiological interactions. Biotinylated oligosaccharides are emerging as a new and powerful tool in this area of research, primarily due to their high affinity towards streptavidin and their ease of immobilization on matrices. Here we describe a novel synthetic approach towards biotinylated saccharides which incorporate a UV absorbing group into the final compounds. The synthetic strategy described is applicable to a variety of saccharides, with examples of biotinylated mono-, di-, and trisaccharides being prepared with overall high efficiency.  相似文献   

19.
With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein’s function is the identification of its interaction partners. Although in saliva some proteins may act primarily as single monomeric units, a significant percentage of all salivary proteins, if not the majority, appear to act in complexes with partners to execute their diverse functions. Coimmunoprecipitation (Co-IP) and pull-down assays were used to identify the heterotypic complexes between histatin 5, a potent natural antifungal protein, and other salivary proteins in saliva. Classical protein–protein interaction methods in combination with high-throughput mass spectrometric techniques were carried out. Co-IP using protein G magnetic Sepharose TM beads suspension was able to capture salivary complexes formed between histatin 5 and its salivary protein partners. Pull-down assay was used to confirm histatin 5 protein partners. A total of 52 different proteins were identified to interact with histatin 5. The present study used proteomic approaches in conjunction with classical biochemical methods to investigate protein–protein interaction in human saliva. Our study demonstrated that when histatin 5 is complexed with salivary amylase, one of the 52 proteins identified as a histatin 5 partner, the antifungal activity of histatin 5 is reduced. We expected that our proteomic approach could serve as a basis for future studies on the mechanism and structural-characterization of those salivary protein interactions to understand their clinical significance.  相似文献   

20.
An important component of functional genomics involves the understanding of protein association. The interfaces resulting from protein-protein interactions - (i) specific, as represented by the homodimeric quaternary structures and the complexes formed by two independently occurring protein components, and (ii) non-specific, as observed in the crystal lattice of monomeric proteins - have been analysed on the basis of the length and the number of peptide segments. In 1000 A2 of the interface area, contributed by a polypeptide chain, there would be 3.4 segments in homodimers, 5.6 in complexes and 6.3 in crystal contacts. Concomitantly, the segments are the longest (with 8.7 interface residues) in homodimers. Core segments (likely to contribute more towards binding) are more in number in homodimers (1.7) than in crystal contacts (0.5), and this number can be used as one of the parameters to distinguish between the two types of interfaces. Dominant segments involved in specific interactions, along with their secondary structural features, are enumerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号