首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LL Zheng  YX Li  J Ding  XK Guo  KY Feng  YJ Wang  LL Hu  YD Cai  P Hao  KC Chou 《PloS one》2012,7(8):e42517
Bacterial pathogens continue to threaten public health worldwide today. Identification of bacterial virulence factors can help to find novel drug/vaccine targets against pathogenicity. It can also help to reveal the mechanisms of the related diseases at the molecular level. With the explosive growth in protein sequences generated in the postgenomic age, it is highly desired to develop computational methods for rapidly and effectively identifying virulence factors according to their sequence information alone. In this study, based on the protein-protein interaction networks from the STRING database, a novel network-based method was proposed for identifying the virulence factors in the proteomes of UPEC 536, UPEC CFT073, P. aeruginosa PAO1, L. pneumophila Philadelphia 1, C. jejuni NCTC 11168 and M. tuberculosis H37Rv. Evaluated on the same benchmark datasets derived from the aforementioned species, the identification accuracies achieved by the network-based method were around 0.9, significantly higher than those by the sequence-based methods such as BLAST, feature selection and VirulentPred. Further analysis showed that the functional associations such as the gene neighborhood and co-occurrence were the primary associations between these virulence factors in the STRING database. The high success rates indicate that the network-based method is quite promising. The novel approach holds high potential for identifying virulence factors in many other various organisms as well because it can be easily extended to identify the virulence factors in many other bacterial species, as long as the relevant significant statistical data are available for them.  相似文献   

2.
The chemokine receptor genes of the CCR cluster on human chromosome 3p21 play important roles in humoral and cellular immune responses. Several of these receptors have been shown to influence human immunodeficiency virus infection and progression to AIDS, and their homologues may play a role in feline immunodeficiency virus infection. We report the isolation and sequencing of a 150-kb domestic cat BAC clone containing the feline CCR genes CCR1, CCR2, CCR3, and CCR5 to further analyze these four receptor genes within the family Felidae. Comparative and phylogenetic analyses reveal evidence for historic gene conversion between the adjacent CCR2 and CCR5 genes in the Felidae and in three independent mammalian orders (Primates, Cetartiodactyla, and Rodentia), resulting in higher than expected levels of sequence similarity between the two paralogous genes within each order. The gene conversion was restricted to the structural (transmembrane) domains of the CCR2 and CCR5 genes. We also discovered a recent gene conversion event between the third extracellular loop of CCR2 and CCR5 genes that was fixed in Asian lions and found at low frequency in African lions (Panthera leo), suggesting that this domain may have an important functional role. Our results suggest that ongoing parallel gene conversion between CCR2 and CCR5 promotes receptor heterodimerization in independent evolutionary lineages and offers an effective adaptive strategy for gene editing and coevolution among interactive immune response genes in mammals.  相似文献   

3.
Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1-/- mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2-/- mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4-/- mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection.  相似文献   

4.
The chemokine receptors CCR2 and CCR5 play important roles in the recruitment of monocytes/macrophages and T cells. To better understand the role of both receptors in murine models of inflammatory diseases and to recognize potential problems when correlating these data to humans, we have generated mAbs against murine CCR2 and CCR5. In mice CCR2 is homogeneously expressed on monocytes and on 2--15% of T cells, closely resembling the expression pattern in humans. In contrast to humans, murine NK cells are highly CCR5 positive. In addition, CCR5 is expressed on 3--10% of CD4 and 10--40% of CD8-positive T cells and is weakly detectable on monocytes. Using a model of immune complex nephritis, we examined the effects of inflammation on chemokine receptor expression and found a 10-fold enrichment of CCR5(+) and CCR2(+) T cells in the inflamed kidneys. The activity of various chemokines and the antagonistic properties of the mAbs were measured by ligand-induced internalization of CCR2 and CCR5 on primary leukocytes. The Ab MC-21 (anti-CCR2) reduced the activity of murine monocyte chemotactic protein 1 by 95%, whereas the Ab MC-68 (anti-CCR5) blocked over 99% of the macrophage-inflammatory protein 1alpha and RANTES activity. MC-21 and MC-68 efficiently blocked the ligand binding to CCR2 and CCR5 with an IC(50) of 0.09 and 0.6--1.0 microg/ml, respectively. In good correlation to these in vitro data, MC-21 almost completely prevented the influx of monocytes in thioglycollate-induced peritonitis. Therefore, both Abs appear as useful reagents to further study the role of CCR2 and CCR5 in murine disease models.  相似文献   

5.
Expression of functional CCR and CXCR chemokine receptors in podocytes   总被引:15,自引:0,他引:15  
Chemokines and their receptors play an important role in the pathogenesis of acute and chronic glomerular inflammation. However, their expression pattern and function in glomerular podocytes, the primary target cells in a variety of glomerulopathies, have not been investigated as of yet. Using RT-PCR, we now demonstrate the expression of CCR4, CCR8, CCR9, CCR10, CXCR1, CXCR3, CXCR4, and CXCR5 in cultured human podocytes. Stimulation of these receptors induced a concentration-dependent biphasic increase of the free cytosolic calcium concentration in podocytes in culture. In addition, we demonstrate that podocytes release IL-8 in the presence of FCS and that IL-8 down-regulates cell surface CXCR1. Chemokine stimulation of the detected CCRs and CXCRs increased activity of NADPH-oxidase, the primary source of superoxide anions in podocytes. Immunohistochemistry studies revealed only diffuse and weak CXCR expression in healthy human glomerula. In contrast, in membranous nephropathy, a characteristic podocyte disorder, the expression of CXCR1, CXCR3, and CXCR5 is up-regulated in podocytes. In conclusion, podocytes in culture and podocytes in human kidney sections express a set of chemokine receptors. The release of oxygen radicals that accompanies the activation of CCRs and CXCRs may contribute to podocyte injury and the development of proteinuria during membranous nephropathy.  相似文献   

6.
Inflammatory processes play an important role in the development of nasal polyps (NP), but the etiology and, to a high degree also, the pathogenesis of NP are not fully understood. The role of several cytokines and chemokines such as eotaxins, IL-4, IL-5, IL-6, IL-8, and RANTES has been reported in NP. Herewith, we investigated the expression and pattern of distribution of chemokine receptors CCR1 and CCR3 in nasal polyps. Immunohistochemical detection was carried out in frozen sections of biopsies from 22 NP and 18 nasal mucosa specimens in both the epithelial and stromal compartments. Fluorescence microscopy and computerized image analysis revealed a statistically significant increased number of CCR1 (45.2?±?2.8 vs. 15.1?±?1.9, p?<?0.001)-positive as well as CCR3 (16.4?±?1.4 vs. 9.7?±?1.1, p?<?0.001)-positive cells in the stroma of NP compared to nasal mucosa. In comparison to healthy nasal mucosa, increased positivity of CCR3 was detected in the epithelial compartment of NP. Our data suggest that increased expression of CCR1 and CCR3 chemokine receptors may, in accord with various chemokines, contribute to the pathogenesis of nasal polyposis by facilitating increased migration and prolonged accumulation of inflammatory cells, e.g., eosinophils, in the inflammatory infiltrate of NP.  相似文献   

7.

Background

Expressed Sequence Tag (EST) sequences are generally single-strand, single-pass sequences, only 200–600 nucleotides long, contain errors resulting in frame shifts, and represent different parts of their parent cDNA. If the cDNAs contain translation initiation sites, they may be suitable for functional genomics studies. We have compared five methods to predict translation initiation sites in EST data: first-ATG, ESTScan, Diogenes, Netstart, and ATGpr.

Results

A dataset of 100 EST sequences, 50 with and 50 without, translation initiation sites, was created. Based on analysis of this dataset, ATGpr is found to be the most accurate for predicting the presence versus absence of translation initiation sites. With a maximum accuracy of 76%, ATGpr more accurately predicts the position or absence of translation initiation sites than NetStart (57%) or Diogenes (50%). ATGpr similarly excels when start sites are known to be present (90%), whereas NetStart achieves only 60% overall accuracy. As a baseline for comparison, choosing the first ATG correctly identifies the translation initiation site in 74% of the sequences. ESTScan and Diogenes, consistent with their intended use, are able to identify open reading frames, but are unable to determine the precise position of translation initiation sites.

Conclusions

ATGpr demonstrates high sensitivity, specificity, and overall accuracy in identifying start sites while also rejecting incomplete sequences. A database of EST sequences suitable for validating programs for translation initiation site prediction is now available. These tools and materials may open an avenue for future improvements in start site prediction and EST analysis.
  相似文献   

8.
Recent physiological findings have revealed that long-term adaptation of the synaptic strengths between cortical pyramidal neurons depends on the temporal order of presynaptic and postsynaptic spikes, which is called spike-timing-dependent plasticity (STDP) or temporally asymmetric Hebbian (TAH) learning. Here I prove by analytical means that a physiologically plausible variant of STDP adapts synaptic strengths such that the presynaptic spikes predict the postsynaptic spikes with minimal error. This prediction error model of STDP implies a mechanism for cortical memory: cortical tissue learns temporal spike patterns if these spike patterns are repeatedly elicited in a set of pyramidal neurons. The trained network finishes these patterns if their beginnings are presented, thereby recalling the memory. Implementations of the proposed algorithms may be useful for applications in voice recognition and computer vision.  相似文献   

9.

Background  

Reverse engineering in systems biology entails inference of gene regulatory networks from observational data. This data typically include gene expression measurements of wild type and mutant cells in response to a given stimulus. It has been shown that when more than one type of experiment is used in the network inference process the accuracy is higher. Therefore the development of generally applicable and effective methodologies that embed multiple sources of information in a single computational framework is a worthwhile objective.  相似文献   

10.
Desensitization of the chemokine receptors, a large class of G protein-coupled receptors, is mediated in part by agonist-driven receptor endocytosis. However, the exact pathways have not been fully defined. Here we demonstrate that the rate of ligand-induced endocytosis of CCR5 in leukocytes and expression systems is significantly slower than that of CXCR4 and requires prolonged agonist treatment, suggesting that these two receptors use distinct mechanisms. We show that the C-terminal domain of CCR5 is the determinant of its slow endocytosis phenotype. When the C-tail of CXCR4 was exchanged for that of CCR5, the resulting CXCR4-CCR5 (X4-R5) chimera displayed a CCR5-like trafficking phenotype. We found that the palmitoylated cysteine residues in this domain anchor CCR5 to plasma membrane rafts. CXCR4 and a C-terminally truncated CCR5 mutant (CCR5-KRFX) lacking these cysteines are not raft associated and are endocytosed by a clathrin-dependent pathway. Genetic inhibition of clathrin-mediated endocytosis demonstrated that a significant fraction of ligand-occupied CCR5 trafficked by clathrin-independent routes into caveolin-containing vesicular structures. Thus, the palmitoylated C-tail of CCR5 is the major determinant of its raft association and endocytic itineraries, differentiating it from CXCR4 and other chemokine receptors. This novel feature of CCR5 may modulate its signaling potential and could explain its preferential use by HIV for person-to-person transmission of disease.  相似文献   

11.
We describe a small molecule chemokine receptor antagonist, UCB35625 (the trans-isomer J113863 published by Banyu Pharmaceutical Co., patent WO98/04554), which is a potent, selective inhibitor of CCR1 and CCR3. Nanomolar concentrations of UCB35625 were sufficient to inhibit eosinophil shape change responses to MIP-1alpha, MCP-4, and eotaxin, while greater concentrations could inhibit the chemokine-induced internalization of both CCR1 and CCR3. UCB35625 also inhibited the CCR3-mediated entry of the human immunodeficiency virus-1 primary isolate 89.6 into the glial cell line, NP-2 (IC(50) = 57 nm). Chemotaxis of transfected cells expressing either CCR1 or CCR3 was inhibited by nanomolar concentrations of the compound (IC(50) values of CCR1-MIP-1alpha = 9.6 nm, CCR3-eotaxin = 93.7 nm). However, competitive ligand binding assays on the same transfectants revealed that considerably larger concentrations of UCB35625 were needed for effective ligand displacement than were needed for the inhibition of receptor function. Thus, it appears that the compound may interact with a region present in both receptors that inhibits the conformational change necessary to initiate intracellular signaling. By virtue of its potency at the two major eosinophil chemokine receptors, UCB35625 is a prototypic therapy for the treatment of eosinophil-mediated inflammatory disorders, such as asthma and as an inhibitor of CCR3-mediated human immunodeficiency virus-1 entry.  相似文献   

12.
We isolated cDNAs for a chemokine receptor-related protein having the database designation GPR-9-6. Two classes of cDNAs were identified from mRNAs that arose by alternative splicing and that encode receptors that we refer to as CCR9A and CCR9B. CCR9A is predicted to contain 12 additional amino acids at its N terminus as compared with CCR9B. Cells transfected with cDNAs for CCR9A and CCR9B responded to the chemokine CC chemokine ligand 25 (CCL25)/thymus-expressed chemokine (TECK)/chemokine beta-15 (CK beta-15) in assays for both calcium flux and chemotaxis. No other chemokines tested produced responses specific for the cDNA-transfected cells. mRNA for CCR9A/B is expressed predominantly in the thymus, coincident with the expression of CCL25, and highest expression for CCR9A/B among thymocyte subsets was found in CD4+CD8+ cells. mRNAs encoding the A and B forms of the receptor were expressed at a ratio of approximately 10:1 in immortalized T cell lines, in PBMC, and in diverse populations of thymocytes. The EC50 of CCL25 for CCR9A was lower than that for CCR9B, and CCR9A was desensitized by doses of CCL25 that failed to silence CCR9B. CCR9 is the first example of a chemokine receptor in which alternative mRNA splicing leads to proteins of differing activities, providing a mechanism for extending the range of concentrations over which a cell can respond to increments in the concentration of ligand. The study of CCR9A and CCR9B should enhance our understanding of the role of the chemokine system in T cell biology, particularly during the stages of thymocyte development.  相似文献   

13.
We describe computational approaches for identifying promising lead candidates for the development of peptide antibiotics, in the context of quantitative structure–activity relationships (QSAR) studies for this type of molecule. A first approach deals with predicting the selectivity properties of generated antimicrobial peptide sequences in terms of measured therapeutic indices (TI) for known antimicrobial peptides (AMPs). Based on a training set of anuran AMPs, the concept of sequence moments was used to construct algorithms that could predict TIs for a second test set of natural AMPs and could also predict the effect of point mutations on TI values. This approach was then used to design peptide antibiotics (adepantins) not homologous to known natural or synthetic AMPs. In a second approach, many novel putative AMPs were identified from DNA sequences in EST databases, using the observation that, as a rule, specific subclasses of highly conserved signal peptides are associated exclusively with AMPs. Both anuran and teleost sequences were used to elucidate this observation and its implications. The predicted therapeutic indices of identified sequences could then be used to identify new types of selective putative AMPs for future experimental verification.  相似文献   

14.
Mucosae-associated epithelial chemokine (MEC) is a novel chemokine whose mRNA is most abundant in salivary gland, with strong expression in other mucosal sites, including colon, trachea, and mammary gland. MEC is constitutively expressed by epithelial cells; MEC mRNA is detected in cultured bronchial and mammary gland epithelial cell lines and in epithelia isolated from salivary gland and colon using laser capture microdissection, but not in the endothelial, hemolymphoid, or fibroblastic cell lines tested. Although MEC is poorly expressed in skin, its closest homologue is the keratinocyte-expressed cutaneous T cell-attracting chemokine (CTACK; CCL27), and MEC supports chemotaxis of transfected lymphoid cells expressing CCR10, a known CTACK receptor. In contrast to CTACK, however, MEC also supports migration through CCR3. Consistent with this, MEC attracts eosinophils in addition to memory lymphocyte subsets. These results suggest an important role for MEC in the physiology of extracutaneous epithelial tissues, including diverse mucosal organs.  相似文献   

15.
Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.  相似文献   

16.
Zheng D  Gerstein MB 《Genome biology》2006,7(Z1):S13.1-S1310

Background

Pseudogenes are inheritable genetic elements showing sequence similarity to functional genes but with deleterious mutations. We describe a computational pipeline for identifying them, which in contrast to previous work explicitly uses intron-exon structure in parent genes to classify pseudogenes. We require alignments between duplicated pseudogenes and their parents to span intron-exon junctions, and this can be used to distinguish between true duplicated and processed pseudogenes (with insertions).

Results

Applying our approach to the ENCODE regions, we identify about 160 pseudogenes, 10% of which have clear 'intron-exon' structure and are thus likely generated from recent duplications.

Conclusion

Detailed examination of our results and comparison of our annotation with the GENCODE reference annotation demonstrate that our computation pipeline provides a good balance between identifying all pseudogenes and delineating the precise structure of duplicated genes.
  相似文献   

17.

Background  

Pathogenicity islands (PAIs), distinct genomic segments of pathogens encoding virulence factors, represent a subgroup of genomic islands (GIs) that have been acquired by horizontal gene transfer event. Up to now, computational approaches for identifying PAIs have been focused on the detection of genomic regions which only differ from the rest of the genome in their base composition and codon usage. These approaches often lead to the identification of genomic islands, rather than PAIs.  相似文献   

18.
19.
Macrophages regulate lymphatic vasculature development; however, the molecular mechanisms regulating their recruitment to developing, and adult, lymphatic vascular sites are not known. Here, we report that resting mice deficient for the inflammatory chemokine‐scavenging receptor, ACKR2, display increased lymphatic vessel density in a range of tissues under resting and regenerating conditions. This appears not to alter dendritic cell migration to draining lymph nodes but is associated with enhanced fluid drainage from peripheral tissues and thus with a hypotensive phenotype. Examination of embryonic skin revealed that this lymphatic vessel density phenotype is developmentally established. Further studies indicated that macrophages and the inflammatory CC‐chemokine CCL2, which is scavenged by ACKR2, are associated with this phenotype. Accordingly, mice deficient for the CCL2 signalling receptor, CCR2, displayed a reciprocal phenotype of reduced lymphatic vessel density. Further examination revealed that proximity of pro‐lymphangiogenic macrophages to developing lymphatic vessel surfaces is increased in ACKR2‐deficient mice and reduced in CCR2‐deficient mice. Therefore, these receptors regulate vessel density by reciprocally modulating pro‐lymphangiogenic macrophage recruitment, and proximity, to developing, resting and regenerating lymphatic vessels.  相似文献   

20.
Mast cells (MCs) accumulate at sites of allergic mucosal inflammation where they act as central effector and regulatory cells. Because chemokines are of vital importance in directing inflammatory leukocytes to the sites of inflammations, we have investigated the expression and function of CC-chemokine receptor (CCR) on human MCs. Two previously unrecognized MC-chemokine receptors, CCR1 and CCR4, could be identified on cord blood-derived MCs (CBMCs). CCR1 and CCR4 expressed on CBMCs exhibited a unique response profile. Of seven CCR1 and CCR4 agonists tested, only CCL5/RANTES act as an agonist inducing chemotaxis. The migration could be partially blocked by specific antibodies against CCR1 or CCR4, while a complete inhibition was achieved when both CCR1 and CCR4 were blocked. These results demonstrate that both CCR1 and CCR4 are functional receptors on human mast cells with capacity to mediate migration towards CCL5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号