首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While it is well accepted that horizontal gene transfer plays an important role in the evolution and the diversification of prokaryotic genomes, many questions remain open regarding its functional mechanisms of action and its interplay with the extant genome. This study addresses the relationship between proteome innovation by horizontal gene transfer and genome content in Proteobacteria. We characterize the transferred genes, focusing on the protein domain compositions and their relationships with the existing protein domain superfamilies in the genome. In agreement with previous observations, we find that the protein domain architectures of horizontally transferred genes are significantly shorter than the genomic average. Furthermore, protein domains that are more common in the total pool of genomes appear to have a proportionally higher chance to be transferred. This suggests that transfer events behave as if they were drawn randomly from a cross-genomic community gene pool, much like gene duplicates are drawn from a genomic gene pool. Finally, horizontally transferred genes carry domains of exogenous families less frequently for larger genomes, although they might do it more than expected by chance.  相似文献   

2.
Acquisition of new genetic material through horizontal gene transfer has been shown to be an important feature in the evolution of many pathogenic bacteria. Changes in the genetic repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens. However, horizontal gene transfer across the domains i.e. archaea and bacteria is not so common. In this context, we explore events of horizontal gene transfer between archaea and bacteria. In order to determine whether the acquisition of archaeal genes by lateral gene transfer is an important feature in the evolutionary history of the pathogenic bacteria, we have developed a scheme of stepwise eliminations that identifies archaeal-like genes in various bacterial genomes. We report the presence of 9 genes of archaeal origin in the genomes of various bacteria, a subset of which is also unique to the pathogenic members and are not found in respective non-pathogenic counterparts. We believe that these genes, having been retained in the respective genomes through selective advantage, have key functions in the organism’s biology and may play a role in pathogenesis.  相似文献   

3.
Lal D  Lal R 《Mikrobiologiia》2010,79(4):524-531
In the present study the role of horizontal gene transfer events in providing the mercury resistance is depicted. merA is key gene in mer operon and has been used for this study. Phylogenetic analysis of aligned merA sequences shows broad similarities to the established 16S rRNA phylogeny. But there is no separation of bacterial merA from archael merA which suggests that merA gene in both these groups share considerable sequence homology. However, inconsistencies between merA and 16S rRNA gene phylogenetic trees are apparent for some taxa. These discrepancies in the phylogenetic trees for merA gene and 16S rRNA gene have lead to the suggestion that horizontal gene transfer (HGT) is a major contributor for its evolution. The close association among members of different groups in merA gene tree, as supported by high bootstrap values, deviations in GC content and codon usage pattern indicate the possibility that horizontal gene transfer events might have taken place during the evolution of this gene.  相似文献   

4.

Background  

Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes.  相似文献   

5.
基因水平转移的评判方法和转移方式研究进展   总被引:2,自引:0,他引:2  
李志江  李海权  刁现民 《遗传》2008,30(9):1108-1114
基因水平转移是不同物种之间或细胞器间基因的交流。基因水平转移现象在原核生物中普遍存在, 在真核生物中近年来也发现了众多例证, 说明水平转移是生物界的普遍现象。文章着重对基因水平转移的概念、评判基因水平转移的标准, 水平转移的特点和转移方式, 以及基因水平转移对基因组进化的作用等方面的研究进展进行了综述。在已有的基因水平转移研究中进化树分析法、碱基组成分析法、选择压力分析法、内含子分析法、特殊序列分析法和核苷酸组成偏向性分析法等几种是常用的方法; 转座序列是生物中最易于发生水平转移的基因类型;原核生物基因水平转移的主要方式有转化、接合和转导, 真核生物中水平转移发生方式尚不清楚。基因水平转移在基因、基因组和生物进化中有着其独特的作用。  相似文献   

6.
This review explores examples of horizontal genetic transfer in eukaryotes and prokaryotes. The best understood of these involves various conserved families of transposable elements, but examples of non-transposable-element-based movement of genes or gene clusters have also been identified in prokaryotic genomes. A unifying theme is the structural and DNA-sequence homology of transposable elements from widely unrelated genomes, suggesting evolutionarily conserved mechanisms for horizontal transfer. This is reinforced by the fundamental similarity in the enzymatic mechanisms of retro viral integration (by integrases) and of transposition (by transposases). The review deals with various types of horizontal transfer, the mechanisms available for such transfer, potential barriers, and the evolutionary significance of horizontal genetic transfer.  相似文献   

7.
Among different species of eukaryotes, the extent and evolutionary significance of horizontal gene transfer remains poorly understood. A newly published study by Friesen and colleagues indicates that a recent gene transfer between two species of fungi has enabled the recipient to rapidly acquire high virulence on wheat. The study highlights a mechanism by which diseases can suddenly emerge, but also brings up the controversial issues of how horizontal gene transfer occurs and whether fungal incompatibility barriers to gene flow are more 'leaky' than was previously thought.  相似文献   

8.
Horizontal gene transfer is accepted as an important evolutionary force modulating the evolution of prokaryote genomes. However, it is thought that horizontal gene transfer plays only a minor role in metazoan evolution. In this paper, I critically review the rising evidence on horizontally transferred genes and on the acquisition of novel traits in metazoans. In particular, I discuss suspected examples in sponges, cnidarians, rotifers, nematodes, molluscs and arthropods which suggest that horizontal gene transfer in metazoans is not simply a curiosity. In addition, I stress the scarcity of studies in vertebrates and other animal groups and the importance of forthcoming studies to understand the importance and extent of horizontal gene transfer in animals.  相似文献   

9.
Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria.  相似文献   

10.
Restriction modification (RM) systems serve to protect bacteria against bacteriophages. They comprise a restriction endonuclease activity that specifically cleaves DNA and a corresponding methyltransferase activity that specifically methylates the DNA, thereby protecting it from cleavage. Such systems are very common in bacteria. To find out whether the widespread distribution of RM systems is due to horizontal gene transfer, we have compared the codon usages of 29 type II RM systems with the average codon usage of their respective bacterial hosts. Pronounced deviations in codon usage were found in six cases:EcoRI,EcoRV,KpnI,SinI,SmaI, andTthHB81. They are interpreted as evidence for horizontal gene transfer in these cases. As the methodology is expected to detect only one-fourth to one-third of all horizontal gene transfer events, this result implies that horizontal gene transfer had a considerable influence on the distribution and evolution of RM systems. In all of these six cases the codon usage deviations of the restriction enzyme genes are much more pronounced than those of the methyltransferase genes. This result suggests that in these cases horizontal gene transfer had occurred sequentially with the gene for the methyltransferase being first acquired by the cell. This can be explained by the fact that an active restriction endonuclease is highly toxic in cells whose DNA is not protected from cleavage by a corresponding methyltransferase.  相似文献   

11.
Although horizontal gene transfer (HGT) is usually considered a disruptive force in recovering organismal phylogeny, it creates important phylogenetic information. In the 'net of life', the recipient of an ancient gene transfer can be the ancestor of a lineage that inherits the transferred gene; thus, the transferred gene marks the recipient and its descendants as a monophyletic group. Ancient gene transfer events can also reveal the order of emergence of donor and recipient lineages. In addition, these ancient events can significantly shape the genetic systems of the recipients and can play a part in their long-term evolution. In this article, we discuss the recent progress in phylogenetic application of ancient HGTs and describe two examples of transfer events to the ancestor of red algae and green plants that support a common origin of these two groups. We also address the potential pitfalls of this application.  相似文献   

12.
We suggest a new procedure to search for the genes with horizontal transfer events in their evolutionary history. The search is based on analysis of topology difference between the phylogenetic trees of gene (protein) groups and the corresponding phylogenetic species trees. Numeric values are introduced to measure the discrepancy between the trees. This approach was applied to analyze 40 prokaryotic genomes classified into 132 classes of orthologs. This resulted in a list of the candidate genes for which the hypothesis of horizontal transfer in evolution looks true.  相似文献   

13.

Background

Shuffling and disruption of operons and horizontal gene transfer are major contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon' hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via horizontal gene transfer, although their retention could be favored by the advantage of coregulation of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities.

Results

Since a substantial number of operons have been identified experimentally in only a few model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The phylogenetic affinities within these predicted operons were assessed first by sequence similarity analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous cases of apparent horizontal transfer of entire operons were detected. However, it was shown that apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene by a horizontally transferred ortholog from a taxonomically distant organism without change of the local gene organization. On rarer occasions, operons might have evolved via independent assembly, in part from horizontally acquired genes.

Conclusions

The discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level.
  相似文献   

14.
Devi Lal  Rup Lal 《Microbiology》2010,79(4):500-508
In the present study the role of horizontal gene transfer events in providing the mercury resistance is depicted. merA gene is key gene in mer operon and has been used for this swtudy. Phylogenetic analysis of aligned merA gene sequences shows broad similarities to the established 16S rRNA gene phylogeny. But there is no separation of bacterial merA gene from archael merA gene which suggests that merA gene in both these groups share considerable sequence homology. However, inconsistencies between merA gene and 16S rRNA gene phylogenetic trees are apparent for some taxa. These discrepancies in the phylogenetic trees for merA gene and 16S rRNA gene have lead to the suggestion that horizontal gene transfer (HGT) is a major contributor for its evolution. The close association among members of different groups in merA gene tree, as supported by high bootstrap values, deviations in GC content and codon usage pattern indicate the possibility that horizontal gene transfer events might have taken place during the evolution of this gene.  相似文献   

15.
Horizontal gene transfer and phylogenetics   总被引:6,自引:0,他引:6  
The initial analysis of complete genomes has suggested that horizontal gene transfer events are very frequent between microorganisms. This could potentially render the inference, and even the concept itself, of the organismal phylogeny impossible. However, a coherent phylogenetic pattern has recently emerged from an analysis of about a hundred genes, the so-called 'core', strongly suggesting that it is possible to infer the phylogeny of prokaryotes. Also, estimation of the frequency of horizontal gene transfers at the genome level in a phylogenetic context seems to indicate that it is rather low, although of significant biological impact. Nevertheless, it should be emphasized that the history of microorganisms cannot be properly represented by the phylogeny of the core, which represents only a tiny fraction of the genome. This history, even if horizontal gene transfers are rare, should be represented by a network surrounding the core phylogeny.  相似文献   

16.
The genomes of the hemiascomycetes Saccharomyces cerevisiae and Ashbya gossypii have been completely sequenced, allowing a comparative analysis of these two genomes, which reveals that a small number of genes appear to have entered these genomes as a result of horizontal gene transfer from bacterial sources. One potential case of horizontal gene transfer in A. gossypii and 10 potential cases in S. cerevisiae were identified, of which two were investigated further. One gene, encoding the enzyme dihydroorotate dehydrogenase (DHOD), is potentially a case of horizontal gene transfer, as shown by sequencing of this gene from additional bacterial and fungal species to generate sufficient data to construct a well-supported phylogeny. The DHOD-encoding gene found in S. cerevisiae, URA1 (YKL216W), appears to have entered the Saccharomycetaceae after the divergence of the S. cerevisiae lineage from the Candida albicans lineage and possibly since the divergence from the A. gossypii lineage. This gene appears to have come from the Lactobacillales, and following its acquisition the endogenous eukaryotic DHOD gene was lost. It was also shown that the bacterially derived horizontally transferred DHOD is required for anaerobic synthesis of uracil in S. cerevisiae. The other gene discussed in detail is BDS1, an aryl- and alkyl-sulfatase gene of bacterial origin that we have shown allows utilization of sulfate from several organic sources. Among the eukaryotes, this gene is found in S. cerevisiae and Saccharomyces bayanus and appears to derive from the alpha-proteobacteria.  相似文献   

17.
Horizontal gene transfer and the origin of species: lessons from bacteria   总被引:31,自引:0,他引:31  
In bacteria, horizontal gene transfer (HGT) is widely recognized as the mechanism responsible for the widespread distribution of antibiotic resistance genes, gene clusters encoding biodegradative pathways and pathogenicity determinants. We propose that HGT is also responsible for speciation and sub-speciation in bacteria, and that HGT mechanisms exist in eukaryotes.  相似文献   

18.
We discuss the impact of horizontal gene transfer (HGT) on phylogenetic reconstruction and taxonomy. We review the power of HGT as a creative force in assembling new metabolic pathways, and we discuss the impact that HGT has on phylogenetic reconstruction. On one hand, shared derived characters are created through transferred genes that persist in the recipient lineage, either because they were adaptive in the recipient lineage or because they resulted in a functional replacement. On the other hand, taxonomic patterns in microbial phylogenies might also be created through biased gene transfer. The agreement between different molecular phylogenies has encouraged interpretation of the consensus signal as reflecting organismal history or as the tree of cell divisions; however, to date the extent to which the consensus reflects shared organismal ancestry and to which it reflects highways of gene sharing and biased gene transfer remains an open question. Preferential patterns of gene exchange act as a homogenizing force in creating and maintaining microbial groups, generating taxonomic patterns that are indistinguishable to those created by shared ancestry. To understand the evolution of higher bacterial taxonomic units, concepts usually applied in population genetics need to be applied.  相似文献   

19.
We have previously shown that DNA can be transferred to phagocytosing cells via the uptake of apoptotic cells. We report a model system that facilitates study of antigen presentation of genes transferred specifically via horizontal gene transfer. Constructs were generated encoding the LacZ gene or the influenza A nucleoprotein silenced by a STOP sequence flanked by two loxP sites. These reporter genes were demonstrated to be silent in donor cells and become activated after phagocytosis of Cre-expressing fibroblasts or macrophages. These results provide a model system for studying the influence of horizontally transferred antigens on activation of the immune system.  相似文献   

20.
In this work, we present a simple kinetic model of horizontal gene transfer. It describes the processes of gene duplication, mutation, gene transfer and the regulation of the total size of the genome for genetically homogeneous prokaryotic species or strains. The emerging nonlinear system of first-order differential equations can be linearized at the stationary point. For selected models, we give an analytical solution for the number of foreign and native genes within a species. We identify a regime characterized by a fast gene transfer rate and species with a mixed genome, a slow gene transfer regime with pure organisms, and a crossover region. The data are compared to experiments, and the biological implications of our model are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号