共查询到20条相似文献,搜索用时 15 毫秒
1.
Mendoza-Milla C Machuca Rodríguez C Córdova Alarcón E Estrada Bernal A Toledo-Cuevas EM Martínez Martínez E Zentella Dehesa A 《FEBS letters》2005,579(18):3947-3952
Tumor necrosis factor alpha (TNF-alpha) is one of the best-described cell death promoters. In murine L929 fibroblasts, dexamethasone inhibits TNF-alpha-induced cytotoxicity. Since phosphatidyl inositol 3 kinase (PI3K) and nuclear factor kappa B (NF-kappaB) proteins regulate several survival pathways, we evaluated their participation in dexamethasone protection against TNF-alpha cell death. We interfered with these pathways by overexpressing a negative dominant mutant of PI3K or a non-degradable mutant of inhibitor of NF-kappaB alpha (IkappaBalpha) (the cytoplasmic inhibitor of NF-kappaB) in L929 cells. The mutant IkappaB, but not the mutant PI3K, abrogated dexamethasone-mediated protection. The loss of dexamethasone protection was associated with a diminished accumulation in XIAP and c-IAP proteins. 相似文献
2.
3.
Nelson BA Robinson KA Buse MG 《American journal of physiology. Endocrinology and metabolism》2002,282(3):E497-E506
3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high glucose or glucosamine, provided insulin (0.6 nM) is present during preincubation. Insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity is unaffected (30). Total cellular IRS-1, PI 3-kinase, or Akt concentrations were unchanged. Akt activation in subcellular fractions was assessed by immunoblotting with two phospho-Akt-specific antibodies. Upon acute 100 nM insulin stimulation, plasma membrane (PM)-associated phospho-Akt was highest in cells preincubated in low glucose with no insulin, less in high glucose with no insulin, even less in low glucose+insulin, and lowest in high glucose+insulin. Only high glucose+insulin caused insulin-resistant glucose transport. Acute insulin stimulation increased total PM-Akt about twofold after preincubation without insulin in low or high glucose. Preincubation with 0.6 nM insulin decreased Akt PM translocation by approximately 25% in low and approximately 50% in high glucose. Preincubation with glucosamine did not affect Akt phosphorylation or translocation. Conclusions: chronic exposure to high glucose or insulin downregulates acute insulin-stimulated Akt activation, acting synergistically distal to PI 3-kinase. Maximal insulin activates more Akt than required for maximal glucose transport stimulation. Insulin resistance may ensue when PM-associated phospho-Akt decreases below a threshold. High glucose and glucosamine cause insulin resistance by different mechanisms in 3T3-L1 adipocytes. 相似文献
4.
Jiang SH Liu CF Zhang XL Xu XH Zou JZ Fang Y Ding XQ 《Cell biochemistry and function》2007,25(3):335-343
Brief and sublethal ischaemia renders an organ tolerant to subsequent prolonged ischaemia, which is called ischaemic preconditioning (IPC). In regard to the beneficial effects and endogenous mechanisms of renal delayed IPC, few data are available. In this study, we aim at determining reno-protective effects of delayed IPC against ischaemia-reperfusion (I/R) injury, and illustrating whether these effects are associated with suppressing inflammation and nuclear factor-kappaB (NF-kappaB) activation. I/R injury was induced by clamping both renal pedicles for 40 min, followed by 24 h of reperfusion. The rats were subjected to ischaemia for 20 min (preconditioning) or sham surgery (non- preconditioning) at day 4 before I/R. Functional and morphological parameters were evaluated at 24 h after reperfusion. At the same time, macrophage (ED-1(+)) infiltration, and the expression of intercellular adhesion molecule-1 (ICAM-1) and tumor necrosis factor-alpha (TNF-alpha) were assessed by immunohistochemistry. Moreover, I kappa B-alpha degradation and NF-kappaB/DNA binding activity were analyzed. Compared with rats exposed to I/R injury, preconditioned rats had a significant decrease in levels of serum creatinine (Scr, 384.3 +/- 21.8 micromol/L vs. 52.5 +/- 21.7 micromol/L; p<0.001), blood urea nitrogen (BUN, 40.4 +/- 2.7 mmol/L vs. 15.9 +/- 4.2 mmol/L; p<0.001) and serum aspartate aminotransferase (AST, 486.7 +/- 58.6 IU/L vs. 267.3 +/- 43.9 IU/L; p<0.001). Parallel to the above changes, preconditioned rats preserved structural integrity and decreased tubulointerstitial damage scores (3.4 +/- 0.3 vs. 0.2 +/- 0.05; p<0.001) and ED-1(+) cell infiltration (25.3 +/- 3.5 vs. 6.2 +/- 1.2 cells/HPF, p<0.01). Furthermore, our results showed that the expression of ICAM-1 and TNF-alpha, the degree of I kappa B-alpha degradation, and NF-kappaB/DNA binding activity were reduced by IPC. Taken together, our results demonstrated that delayed IPC offered both functional and histological protection, which may be related to suppression of inflammation in preconditioned kidneys. 相似文献
5.
Gu JW Tian N Shparago M Tan W Bailey AP Manning RD 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,291(6):R1817-R1824
Molecular mechanisms of salt-sensitive (SS) hypertension related to renal inflammation have not been defined. We seek to determine whether a high-salt (HS) diet induces renal activation of NF-kappaB and upregulation of TNF-alpha related to the development of hypertension in Dahl SS rats. Six 8-wk-old male Dahl SS rats received a HS diet (4%), and six Dahl SS rats received a low-sodium diet (LS, 0.3%) for 5 wk. In the end, mean arterial pressure was determined in conscious rats by continuous monitoring through a catheter placed in the carotid artery. Mean arterial pressure was significantly higher in the HS than the LS group (177.9 +/- 3.7 vs. 109.4 +/- 2.9 mmHg, P < 0.001). There was a significant increase in urinary albumin secretion in the HS group compared with the LS group (22.3 +/- 2.6 vs. 6.1 +/- 0.7 mg/day; P < 0.001). Electrophoretic mobility shift assay demonstrated that the binding activity of NF-kappaB p65 proteins in the kidneys of Dahl SS rats was significantly increased by 53% in the HS group compared with the LS group (P = 0.007). ELISA indicated that renal protein levels of TNF-alpha, but not IL-6, interferon-gamma, and CCL28, were significantly higher in the HS than the LS group (2.3 +/- 0.8 vs. 0.7 +/- 0.2 pg/mg; P = 0.036). We demonstrated that plasma levels of TNF-alpha were significantly increased by fivefold in Dahl SS rats on a HS diet compared with a LS diet. Also, we found that increased physiologically relevant sodium concentration (10 mmol/l) directly stimulated NF-kappaB activation in cultured human renal proximal tubular epithelial cells. These findings support the hypothesis that activation of NF-kappaB and upregulation of TNF-alpha are the important renal mechanisms linking proinflammatory response to SS hypertension. 相似文献
6.
Human epidemiological and animal studies have shown the beneficial effect of zinc supplementation on mitigating diabetic nephropathy. However, the mechanism by which zinc protects the kidney from diabetes remains unknown. Here we demonstrate the therapeutic effects of zinc on diabetes-induced renal pathological and functional changes. These abnormalities were found in both transgenic OVE26 and Akt2-KO diabetic mouse models, accompanied by significant changes in glucose-metabolism-related regulators. The changes included significantly decreased phosphorylation of Akt and GSK-3β, increased phosphorylation of renal glycogen synthase, decreased expression of hexokinase II and PGC-1α, and increased expression of the Akt negative regulators PTEN, PTP1B, and TRB3. All of these were significantly prevented by zinc treatment for 3 months. Furthermore, zinc-stimulated changes in glucose metabolism mediated by Akt were actually found to be metallothionein dependent, but not Akt2 dependent. These results suggest that the therapeutic effects of zinc in diabetic nephropathy are mediated, in part, by the preservation of glucose-metabolism-related pathways via the prevention of diabetes-induced upregulation of Akt negative regulators. Given that zinc deficiency is very common in diabetics, this finding implies that regularly monitoring zinc levels in diabetic patients, as well as supplementing if low, is important in mitigating the development of diabetic nephropathy. 相似文献
7.
Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-alpha
Janczewski AM Kadokami T Lemster B Frye CS McTiernan CF Feldman AM 《American journal of physiology. Heart and circulatory physiology》2003,284(3):H960-H969
Transgenic (TG) TNF1.6 mice, which cardiac specifically overexpress tumor necrosis factor-alpha (TNF-alpha), exhibit heart failure (HF) and increased mortality, which is markedly higher in young (<20 wk) males (TG-M) than females (TG-F). HF in this model may be partly caused by remodeling of the extracellular matrix and/or structure/function alterations at the single myocyte level. We studied left ventricular (LV) structure and function using echocardiography and LV myocyte morphometry, contractile function, and intracellular Ca(2+) (Ca(i)(2+)) handling using cell edge detection and fura 2 fluorescence, respectively, in 12-wk-old TG-M and TG-F mice and their wild-type (WT) littermates. TG-F mice showed LV hypertrophy without dilatation and only a small reduction of basal fractional shortening (FS) and response to isoproterenol (Iso). TG-M mice showed a large LV dilatation, higher mRNA levels of beta-myosin heavy chain and atrial natriuretic factor versus TG-F mice, reduced FS relative to both WT and TG-F mice, and minimal response to Iso. TG-F and TG-M myocytes were similarly elongated (by approximately 20%). The amplitude of Ca(i)(2+) transients and contractions and the response to Iso were comparable in WT and TG-F myocytes, whereas the time to 50% decline (TD(50%)) of the Ca(i)(2+) transient, an index of the rate of sarcoplasmic reticulum Ca(2+) uptake, was prolonged in TG-F myocytes. In TG-M myocytes, the amplitudes of Ca(i)(2+) transients and contractions were reduced, TD(50%) of the Ca(i)(2+) transient was prolonged, and the inotropic effect of Iso on Ca(i)(2+) transients was reduced approximately twofold versus WT myocytes. Protein expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and phospholamban was unaltered in TG versus WT hearts, suggesting functional origins of impaired Ca(2+) handling in the former. These results indicate that cardiac-specific overexpression of TNF-alpha induces myocyte hypertrophy and gender-dependent alterations in Ca(i)(2+) handling and contractile function, which may at least partly account for changes in LV geometry and in vivo cardiac function in this model. 相似文献
8.
Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and NF-kappaB in human colon cancer 总被引:10,自引:0,他引:10
Peroxisome-proliferator activated receptor-gamma (PPARgamma) has been demonstrated to exert an inhibitory effect on cell growth in most cell types studied, but its role in colon cancer is still uncertain. The molecular mechanism between the activation of PPARgamma and its consequence is unknown. In the present report, we show that the expression of PPARgamma was significantly increased in tumor tissues from human colon cancer compared with non-tumor tissues and that PPARgamma ligands, 15-Deoxy-delta(12,14)prostaglandin J2 or ciglitizone, induced apoptosis in HT-29 cells, a human colon cancer cell line. The occurrence of apoptosis induced by PPARgamma ligands was sequentially accompanied by reduced levels of NF-kappaB and Bcl-2. Over-expression of Bcl-2 significantly protected the cells from apoptosis. This study suggested that a PPARgamma-Bcl-2 feedback loop may function to control the life-death continuum in colonic cells and that a deficiency in generation of PPARgamma ligands may precede the development of human colon cancer. 相似文献
9.
Kabir AM Clark JE Tanno M Cao X Hothersall JS Dashnyam S Gorog DA Bellahcene M Shattock MJ Marber MS 《American journal of physiology. Heart and circulatory physiology》2006,291(4):H1893-H1899
To examine whether cardioprotection initiated by reactive oxygen species (ROS) is dependent on protein kinase Cepsilon (PKCepsilon), isolated buffer-perfused mouse hearts were randomized to four groups: 1) antimycin A (AA) (0.1 microg/ml) for 3 min followed by 10 min washout and then 30 min global ischemia (I) and 2 h reperfusion (R); 2) controls of I/R alone; 3) AA bracketed with 13 min of N-2-mercaptopropionyl- glycine (MPG) followed by I/R; and 4) MPG (200 microM) alone, followed by I/R. Isolated adult rat ventricular myocytes (ARVM) were exposed to AA (0.1 microg/ml), and lucigenin was used to measure ROS production. Murine hearts and ARVM were exposed to AA (0.1 microg/ml) with or without MPG, and PKCepsilon translocation was measured by cell fractionation and subsequent Western blot analysis. Finally, the dependence of AA protection on PKCepsilon was determined by the use of knockout mice (-/-) lacking PKCepsilon. AA exposure caused ROS production, which was abolished by the mitochondrial uncoupler mesoxalonitrile 4-trifluoromethoxyphenylhydrazone. In addition, AA significantly reduced the percent infarction-left ventricular volume compared with control I/R (26 +/- 4 vs. 43 +/- 2%; P < 0.05). Bracketing AA with MPG caused a loss of protection (52 +/- 7 vs. 26 +/- 4%; P < 0.05). AA caused PKCepsilon translocation only in the absence of MPG, and protection was lost on the pkcepsilon(-/-) background (38 +/- 3 vs. 15 +/- 4%; P < 0.001). AA causes ROS production, on which protection and PKCepsilon translocation depend. In addition, protection is absent in PKCepsilon null hearts. Our results imply that, in common with ischemic preconditioning, PKCepsilon is crucial to ROS-mediated protection. 相似文献
10.
Satoh A Gukovskaya AS Nieto JM Cheng JH Gukovsky I Reeve JR Shimosegawa T Pandol SJ 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(3):G582-G591
Although NF-kappaB plays an important role in pancreatitis, mechanisms underlying its activation remain unclear. We investigated the signaling pathways mediating NF-kappaB activation in pancreatic acinar cells induced by high-dose cholecystokinin-8 (CCK-8), which causes pancreatitis in rodent models, and TNF-alpha, which contributes to inflammatory responses of pancreatitis, especially the role of PKC isoforms. We determined subcellular distribution and kinase activities of PKC isoforms and NF-kappaB activation in dispersed rat pancreatic acini. We applied isoform-specific, cell-permeable peptide inhibitors to assess the role of individual PKC isoforms in NF-kappaB activation. Both CCK-8 and TNF-alpha activated the novel isoforms PKC-delta and -epsilon and the atypical isoform PKC-zeta but not the conventional isoform PKC-alpha. Inhibition of the novel PKC isoforms but not the conventional or the atypical isoform resulted in the prevention of NF-kappaB activation induced by CCK-8 and TNF-alpha. NF-kappaB activation by CCK-8 and TNF-alpha required translocation but not tyrosine phosphorylation of PKC-delta. Activation of PKC-delta, PKC-epsilon, and NF-kappaB with CCK-8 involved both phosphatidylinositol-specific PLC and phosphatidylcholine (PC)-specific PLC, whereas with TNF-alpha they only required PC-specific PLC for activation. Results indicate that CCK-8 and TNF-alpha initiate NF-kappaB activation by different PLC pathways that converge at the novel PKCs (delta and epsilon) to mediate NF-kappaB activation in pancreatic acinar cells. These findings suggest a key role for the novel PKCs in pancreatitis. 相似文献
11.
12.
de Oliveira-Marques V Cyrne L Marinho HS Antunes F 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(6):3893-3902
Although the germicide role of H(2)O(2) released during inflammation is well established, a hypothetical regulatory function, either promoting or inhibiting inflammation, is still controversial. In particular, after 15 years of highly contradictory results it remains uncertain whether H(2)O(2) by itself activates NF-kappaB or if it stimulates or inhibits the activation of NF-kappaB by proinflammatory mediators. We investigated the role of H(2)O(2) in NF-kappaB activation using, for the first time, a calibrated and controlled method of H(2)O(2) delivery--the steady-state titration--in which cells are exposed to constant, low, and known concentrations of H(2)O(2). This technique contrasts with previously applied techniques, which disrupt cellular redox homeostasis and/or introduce uncertainties in the actual H(2)O(2) concentration to which cells are exposed. In both MCF-7 and HeLa cells, H(2)O(2) at extracellular concentrations up to 25 microM did not induce significantly per se NF-kappaB translocation to the nucleus, but it stimulated the translocation induced by TNF-alpha. For higher H(2)O(2) doses this stimulatory role shifts to an inhibition, which may explain published contradictory results. The stimulatory role was confirmed by the observation that 12.5 microM H(2)O(2), a concentration found during inflammation, increased the expression of several proinflammatory NF-kappaB-dependent genes induced by TNF-alpha (e.g., IL-8, MCP-1, TLR2, and TNF-alpha). The same low H(2)O(2) concentration also induced the anti-inflammatory gene coding for heme oxygenase-1 (HO-1) and IL-6. We propose that H(2)O(2) has a fine-tuning regulatory role, comprising both a proinflammatory control loop that increases pathogen removal and an anti-inflammatory control loop, which avoids an exacerbated harmful inflammatory response. 相似文献
13.
Dystrophic muscle undergoes repeated cycles of degeneration/regeneration, characterized by the presence of hypertrophic fibers. In order to elucidate the signaling pathways that govern these events, we investigated Akt activation in normal and dystrophic muscle. Akt is activated in neonatal muscle and in actively dividing myoblasts, supporting a developmental role for Akt signaling. Akt activation was detected at very early, prenecrotic stages of disease pathogenesis, and maximal activation was observed during peak stages of muscle hypertrophy. Duchenne muscular dystrophy patients exhibit a similar pattern of Akt activation. Mice with sarcoglycan-deficient muscular dystrophy possess more severe muscle pathology and display elevated Akt signaling. However, the highest levels of Akt activation were found in dystrophin-utrophin-deficient muscle with very advanced dystrophy. We propose that Akt may serve as an early biomarker of disease and that Akt activation mediates hypertrophy in muscular dystrophy. Current investigations are focused on introducing constitutively active and dominant-negative Akt into prenecrotic mdx mice to determine how early modification of Akt activity influences disease pathogenesis. 相似文献
14.
15.
16.
17.
18.
Pyle WG Smith TD Hofmann PA 《American journal of physiology. Heart and circulatory physiology》2000,279(4):H1941-H1948
Opioid and alpha-adrenergic receptor activation protect the heart from ischemic damage. One possible intracellular mechanism to explain this is that an improvement in ATP availability contributes to cardioprotection. We tested this hypothesis by correlating postischemic left ventricular developed pressure (LVDP) and myofibrillar Ca(2+)-dependent actomyosin Mg(2+)-ATPase from isolated rat hearts treated with the kappa-opioid receptor agonist U-50488H (1 microM) or the alpha-adrenergic receptor agonist phenylephrine (10 microM) + propranolol (3 microM). Preischemic treatment with U-50488H or phenylephrine + propranolol improved postischemic LVDP recovery by 25-30% over control hearts. Ca(2+)-dependent actomyosin Mg(2+)-ATPase was found to be 20% lower in both U-50488H- and phenylephrine + propranolol-treated hearts compared with control hearts. The kappa-opioid receptor antagonist nor-binaltorphimine (1 microM) abolished the effects of U-50488H on postischemic LVDP and actomyosin Mg(2+)-ATPase activity. Reduced actomyosin ATP utilization was also suggested in single ventricular myocytes treated with either U-50488H or the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), because U-50488H and PMA lowered maximum velocity of unloaded shortening by 15-25% in myocytes. U-50488H and phenylephrine + propranolol treatment both resulted in increased phosphorylation of troponin I and C protein. These findings are consistent with the hypothesis that kappa-opioid and alpha-adrenergic receptors decrease actin-myosin cycling rate, leading to a conservation of ATP and cardioprotection during ischemia. 相似文献
19.
Thyagarajan T Sreenath T Cho A Wright JT Kulkarni AB 《The Journal of biological chemistry》2001,276(14):11016-11020
Transforming growth factor (TGF)-beta1 is expressed in developing tooth from the initiation stage through adulthood. Odontoblast-specific expression of TGF-beta1 in the tooth continues throughout life; however, the precise biological functions of this growth factor in the odontoblasts are not clearly understood. Herein, we describe the generation of transgenic mice that overexpress active TGF-beta1 predominantly in the odontoblasts. Teeth of these mice show a significant reduction in the tooth mineralization, defective dentin formation, and a relatively high branching of dentinal tubules. Dentin extracellular matrix components such as type I and III collagens are increased and deposited abnormally in the dental pulp, similar to the hereditary human tooth disorders such as dentin dysplasia and dentinogenesis imperfecta. Calcium, one of the crucial inorganic components of mineralization, is also apparently increased in the transgenic mouse teeth. Most importantly, the expression of dentin sialophosphoprotein (dspp), a candidate gene implicated in dentinogenesis imperfecta II (MIM 125420), is significantly down-regulated in the transgenic teeth. Our results provide in vivo evidence suggesting that TGF-beta1 mediated expression of dspp is crucial for dentin mineralization. These findings also provide for the first time a direct experimental evidence indicating that decreased dspp gene expression along with the other cellular changes in odontoblasts may result in human hereditary dental disorders like dentinogenesis imperfecta II (MIM 125420) and dentin dysplasia (MIM 125400 and 125420). 相似文献
20.
Avarol is a marine sesquiterpenoid hydroquinone with interesting pharmacological properties including anti-inflammatory and antipsoriatic effects. In the present study we evaluated the pharmacological effect of avarol on some inflammatory parameters related to the pathogenesis of psoriasis. Avarol inhibited tumor necrosis factor-alpha (TNF-alpha) generation in stimulated human monocytes (IC(50) 1 microM) and TNF-alpha-induced activation of nuclear factor-kappaB (NF-kappaB)-DNA binding in keratinocytes. In the mouse air pouch model, administration of avarol produced a dose-dependent reduction of TNF-alpha generation (ED(50) 9.2 nmol/pouch) as well as of interleukin (IL)-1beta, prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels in pouch exudates. In the psoriasis-like model of 12-O-tetradecanoylphorbol-acetate-induced mouse epidermal hyperplasia, topical administration of avarol (0.6-1.2 micromol/site) reduced edema, myeloperoxidase activity, IL-1beta, IL-2 and eicosanoid levels in skin. Histopathological study confirmed the inhibition of epidermal hyperplasia as well as leukocyte infiltration. The reduction of cutaneous TNF-alpha by avarol was also detected by immunohistochemical analysis. Avarol was also capable of suppressing in vivo NF-kappaB nuclear translocation, determined in mouse skin. Our results suggested that antipsoriatic properties of avarol previously described could be mediated in part by the downregulation of several inflammatory biomarkers, such as TNF-alpha and NF-kappaB in psoriatic skin. 相似文献