首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial beta-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A-->G, and a further 18% have this mutation in only one disease allele. In addition, a large number of rare disease-causing mutations have been identified and characterized. There is no clear genotype-phenotype correlation. High 985A-->G carrier frequencies in populations of European descent and the usual avoidance of recurrent disease episodes by patients diagnosed with MCAD deficiency who comply with a simple dietary treatment suggest that MCAD deficiency is a candidate in prospective screening of newborns. Therefore, several such screening programs employing analysis of acylcarnitines in blood spots by tandem mass spectrometry (MS/MS) are currently used worldwide. No validation of this method by mutation analysis has yet been reported. We investigated for MCAD mutations in newborns from US populations who had been identified by prospective MS/MS-based screening of 930,078 blood spots. An MCAD-deficiency frequency of 1/15,001 was observed. Our mutation analysis shows that the MS/MS-based method is excellent for detection of MCAD deficiency but that the frequency of the 985A-->G mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients. Our identification of a new mutation, 199T-->C, which has never been observed in patients with clinically manifested disease but was present in a large proportion of the acylcarnitine-positive samples, may explain this skewed ratio. Overexpression experiments showed that this is a mild folding mutation that exhibits decreased levels of enzyme activity only under stringent conditions. A carrier frequency of 1/500 in the general population makes the 199T-->C mutation one of the three most prevalent mutations in the enzymes of fatty-acid oxidation.  相似文献   

2.
Summary RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII, PstI and TaqI and with an MCAD cDNA-clone as a probe. Of 32 disease-causing alleles studied, 31 possesed the previously publised AG point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present. In contrast, the same haplotype was present in only 23% of normal alleles (P3.4×10-18). These findings are consistent with the existence of a pronounced founder effect, possibly combined with biological and/or sampling selection.  相似文献   

3.
Many of the previously described enzymatic assay methods for the diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency have been dependent upon the measurement of radioisotope-labeled co-products or reduction of electron acceptors. We have developed a direct assay method to detect 2-enoyl-CoA production using high-performance liquid chromatography (HPLC). Crude cell lysate prepared from lymphocytes were incubated with n-octanoyl-CoA and ferrocenium hexafluorophosphate. The detection of 2-octenoyl-CoA was significantly reproducible. We applied the assay to samples from four infants suspected to have MCAD deficiency by tandem mass spectrometry (MS/MS) newborn screening conducted in the Hiroshima area of Japan. Three of them were proved to have pathologically reduced residual enzyme activities, although they were associated with various clinical and biochemical phenotypes. In addition, another symptomatic Japanese patient and her presymptomatic sibling who were detected by MS/MS selective screening were successfully diagnosed by our enzymatic assay. These results indicate that the method can be a useful confirmatory test for MS/MS screening of MCAD deficiency.  相似文献   

4.
5.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is an inborn error of fatty-acid oxidation that is characterized by fasting intolerance and recurrent episodes of hypoglycemic coma which can be fatal. Its incidence is one of the highest among genetic metabolic disorders. Using a modified PCR and NcoI digestion method, we have surveyed 46 additional, unrelated MCAD-deficient patients for a prevalent mutation, an 985A-to-G transition (985A----G), that we previously identified in nine MCAD-deficient patients. Among the total of 55 studied, 44 were homozygous and 10 were heterozygous for the 985G allele, whereas one did not carry this mutant allele, indicating that the prevalence of the 985G allele is 89.1%. Furthermore, we identified five other types of mutation: one each in three of the compound heterozygotes and two in the single non-985G patient. An RFLP study of 12 985G-homozygotes showed that all 24 alleles fell into a single haplotype. A questionnaire regarding the ethnic and national origin of their patients was sent to all referring investigators. All 41 patients for whom this information was provided were Caucasians. Of 29 patients whose country of origin was specified, 19 and five were from the British Isles and Germany, respectively. These data suggest that 985A----G may have occurred in a single person in an ancient Germanic tribe.  相似文献   

6.
Isovaleric acidemia (IVA) is an inborn error of leucine metabolism that can cause significant morbidity and mortality. Since the implementation, in many states and countries, of newborn screening (NBS) by tandem mass spectrometry, IVA can now be diagnosed presymptomatically. Molecular genetic analysis of the IVD gene for 19 subjects whose condition was detected through NBS led to the identification of one recurring mutation, 932C-->T (A282V), in 47% of mutant alleles. Surprisingly, family studies identified six healthy older siblings with identical genotype and biochemical evidence of IVA. Our findings indicate the frequent occurrence of a novel mild and potentially asymptomatic phenotype of IVA. This has significant consequences for patient management and counseling.  相似文献   

7.
Summary A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed. All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing their obligate carrier status. Allelic homozygosity in the patient and heterozygosity for the mutation in the parents were established by a modified PCR reaction, introducing a cleavage site for the restriction endonuclease NcoI into amplified genomic DNA containing G985. The same assay consistently revealed A985 in genomic DNA from 26 control individuals. The A to G mutation was introduced into an E. coli expression vector producing mutant MCAD, which was demonstrated to be inactive, probably because of the inability to form active tetrameric MCAD. All the experiments are consistent with the contention that the G985 mutation, resulting in a lysine to glutamate shift at position 329 in the MCAD polypeptide chain, is the genetic cause of MCAD deficiency in this family. We found the same mutation in homozygous form in 11 out of 12 other patients with verified MCAD deficiency.  相似文献   

8.
F Tamura  S Nishimura    M Ohki 《The EMBO journal》1984,3(5):1103-1107
The temperature-sensitive divE mutant of Escherichia coli cannot synthesize certain membrane and cytoplasmic proteins at a non-permissive temperature. Growth of the mutant cells is arrested at a specific stage of the cell cycle when exposed to the non-permissive conditions, suggesting that the divE mutant possesses a defect in cell division control. From sequence determination of a cloned 1.35-kbp DNA fragment that complements the temperature-sensitive divE42 mutation, we characterized two genes in the segment ; one for tRNASer1 and the other for a 23 500 dalton protein. In parallel experiments we cloned the homologous 1.35-kbp DNA fragment from the divE42 mutant and determined its entire nucleotide sequence. Comparison of the two sequences showed that the mutation site is located not in the protein gene, but in the tRNA gene, where A10 is replaced by G10 in the D-stem. Lambda transducing phages carrying the subcloned tRNASer1 gene complemented the divE42 mutation, thereby confirming the conclusion obtained from sequence analyses of the fragments. This finding indicates that tRNASer1 is specifically involved in regulation of cell cycle-specific protein synthesis, coupled with an important step in the process of cell division, or that usage of serine tRNA is functionally specific for the biosynthesis of certain proteins.  相似文献   

9.
1. The behavior of H4-lactate dehydrogenase in a solution of sodium chloride was studied with respect to its molecular weight. The molecular weight decreased as the concentration of sodium chloride increased. 2. On a controlled-pore glass column equilibrated by 0.5 M soldium chloride, H4-lactate dehydrogenase was found to have mol. wt 77,500. 3. In a low salt column (0.1 M sodium chloride or less), on the other hand, the molecular weight was found to be about 135,000. 4. Salt concentration dependent association-dissociation system of the enzyme was also observed by the sedimentation equilibrium method.  相似文献   

10.
H Schmidt  K Richert  R A Drakas  N F K?ufer 《Genetics》1999,153(3):1183-1191
We have identified two classical extragenic suppressors, spp41 and spp42, of the temperature sensitive (ts) allele prp4-73. The prp4(+) gene of Schizosaccharomyces pombe encodes a protein kinase. Mutations in both suppressor genes suppress the growth and the pre-mRNA splicing defect of prp4-73(ts) at the restrictive temperature (36 degrees ). spp41 and spp42 are synthetically lethal with each other in the presence of prp4-73(ts), indicating a functional relationship between spp41 and spp42. The suppressor genes were mapped on the left arm of chromosome I proximal to the his6 gene. Based on our mapping data we isolated spp42 by screening PCR fragments for functional complementation of the prp4-73(ts) mutant at the restrictive temperature. spp42 encodes a large protein (p275), which is the homologue of Prp8p. This protein has been shown in budding yeast and mammalian cells to be a bona fide pre-mRNA splicing factor. Taken together with other recent genetic and biochemical data, our results suggest that Prp4 kinase plays an important role in the formation of catalytic spliceosomes.  相似文献   

11.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

12.
13.
The entire coding sequence of the tonB gene, except for nine codons at the 3 end, was deleted from the chromosome of Escherichia coli. Introduction of the btuB451 suppressor mutant tonB1 into the chromosome of such a tonB deletion strain showed that the tonB1 allele was active as a suppressor in a single copy at 37° C and 42° C but not at 28° C. No temperature dependence was seen when FepA- or FhuA-dependent activities of the tonB1 gene product (TonBQ160K) were tested. The btuB451 suppressor activity of tonB1 was inhibited by the simultaneous presence within the cells of the tonB + allele on a multicopy plasmid. This represents the first case of dominance among different tonB alleles. Inhibition of suppression was abolished by overexpression of the btuB451-encoded receptor protein. Competition for binding of TonB+ and TonBQ150K to ExbB was excluded as the cause of dominance. Based on our data we conclude that competition for binding of TonB + and TonBQ160K to the btuB451 gene product is the reason for the observed dominance. The implications of these findings for the mechanism of btuB451 suppression by tonB1 are discussed.  相似文献   

14.
Isocitrate dehydrogenase kinase/phosphatase (IDHK/P) is a homodimeric enzyme which controls the oxidative metabolism of Escherichia coli, and exibits a high intrinsic ATPase activity. When subjected to electrophoresis under nonreducing conditions, the purified enzyme migrates partially as a dimer. The proportion of the dimer over the monomer is greatly increased by treatment with cupric 1,10 phenanthrolinate or 5,5'-dithio-bis(2-nitrobenzoic acid), and fully reversed by dithiothreitol, indicating that covalent dimerization is produced by a disulfide bond. To identify the residue(s) involved in this intermolecular disulfide-bond, each of the eight cysteines of the enzyme was individually mutated into a serine. It was found that, under nonreducing conditions, the electrophoretic patterns of all corresponding mutants are identical to that of the wild-type, except for the Cys67-->Ser which migrates exclusively as a monomer and for the Cys108-->Ser which migrates preferentially as a dimer. Furthermore, in contrast to the wild-type enzyme and all the other mutants, the Cys67-->Ser mutant still migrates as a monomer after treatment with cupric 1,10 phenanthrolinate. This result indicates that the intermolecular disulfide bond involves only Cys67 in each IDHK/P wild-type monomer. This was further supported by mass spectrum analysis of the tryptic peptides derived from either the cupric 1,10 phenanthrolinate-treated wild-type enzyme or the native Cys108-->Ser mutant, which show that they both contain a Cys67-Cys67 disulfide bond. Moreover, both the cupric 1,10 phenanthrolinate-treated wild-type enzyme and the native Cys108-->Ser mutant contain another disulfide bond between Cys356 and Cys480. Previous results have shown that this additional Cys356-Cys480 disulfide bond is intramolecular [Oudot, C., Jault, J.-M., Jaquinod, M., Negre, D., Prost, J.-F., Cozzone, A.J. & Cortay, J.-C. (1998) Eur. J. Biochem. 258, 579-585].  相似文献   

15.
Eukaryotic polyamine transport systems have not yet been characterized at the molecular level. We have used transposon mutagenesis to identify genes controlling polyamine transport in Saccharomyces cerevisiae. A haploid yeast strain was transformed with a genomic minitransposon- and lacZ-tagged library, and positive clones were selected for growth resistance to methylglyoxal bis(guanylhydrazone) (MGBG), a toxic polyamine analog. A 747-bp DNA fragment adjacent to the lacZ fusion gene rescued from one MGBG-resistant clone mapped to chromosome X within the coding region of a putative Ser/Thr protein kinase gene of previously unknown function (YJR059w, or STK2). A 304-amino-acid stretch comprising 11 of the 12 catalytic subdomains of Stk2p is approximately 83% homologous to the putative Pot1p/Kkt8p (Stk1p) protein kinase, a recently described activator of low-affinity spermine uptake in yeast. Saturable spermidine transport in stk2::lacZ mutants had an approximately fivefold-lower affinity and twofold-lower Vmax than in the parental strain. Transformation of stk2::lacZ cells with the STK2 gene cloned into a single-copy expression vector restored spermidine transport to wild-type levels. Single mutants lacking the catalytic kinase subdomains of STK1 exhibited normal parameters for the initial rate of spermidine transport but showed a time-dependent decrease in total polyamine accumulation and a low-level resistance to toxic polyamine analogs. Spermidine transport was repressed by prior incubation with exogenous spermidine. Exogenous polyamine deprivation also derepressed residual spermidine transport in stk2::lacZ mutants, but simultaneous disruption of STK1 and STK2 virtually abolished high-affinity spermidine transport under both repressed and derepressed conditions. On the other hand, putrescine uptake was also deficient in stk2::lacZ mutants but was not repressed by exogenous spermidine. Interestingly, stk2::lacZ mutants showed increased growth resistance to Li+ and Na+, suggesting a regulatory relationship between polyamine and monovalent inorganic cation transport. These results indicate that the putative STK2 Ser/Thr kinase gene is an essential determinant of high-affinity polyamine transport in yeast whereas its close homolog STK1 mostly affects a lower-affinity, low-capacity polyamine transport activity.  相似文献   

16.
17.
The Minute phenotype results from mutations at >50 loci scattered throughout the genome of Drosophila. Common traits of the Minute phenotype are short and thin bristles, slow development, and recessive lethality. Here, we report a novel P-element induced Minute mutation, P{lacW}M(3)66D 1 , that maps to region 66D on chromosome 3L. Flies heterozygous for P{lacW}M(3)66D 1 have a strong Minute phenotype. Molecular characterisation of the chromosomal region revealed three previously undescribed Drosophila genes clustered within a 5-kb genomic fragment. Two of the genes have significant sequence homology to genes for the mammalian ribosomal proteins L14 and RD, respectively, and share a joint 240-bp promoter region harbouring the P-element insert. Quantitative Northern blot analyses showed the mutation to affect RPL14 mRNA levels only. Interestingly, the reduction in abundance of RPL14 mRNA is not constitutive, indicating that the promoter function abolished by the inserted P-element is utilised with different efficiencies in different developmental situations. Remobilisation of the P element produced wild-type flies with normal levels of RPL14 mRNA, demonstrating that the mutant phenotype is caused by the insertion. P{lacW}M(3)66D 1 joins a growing list of Minute mutations associated with ribosomal protein-haploinsufficiency. Received: 20 January 1997 / Accepted: March 3 1997  相似文献   

18.

Background  

The histone H2A family encompasses the greatest number of core histone variants of which the replacement variant H2A.Z is currently one of the most heavily studied. No clear mechanism for the functional variability that H2A.Z imparts to chromatin has yet been proposed. While most of the past studies have referred to H2A.Z generically as a single protein, in vertebrates it is a mixture of two protein forms H2A.Z-1 (previously H2A.Z) and H2A.Z-2 (previously H2A.F/Z or H2A.V) that differ by three amino acids.  相似文献   

19.
Gaucher disease (GD) is one of the most prevalent lysosomal storage disorders and one of the rare genetic diseases now accessible to therapy. Outside the Ashkenazi Jewish community, a high molecular diversity is observed, leaving approximately 30% of alleles undetected. Nevertheless, very few exhaustive methods have been developed for extensive gene screening of a large series of patients. Our approach for a complete search of mutations was the association of fluorescent chemical cleavage of mismatches with a universal strand-specific labeling system. The glucocerebrosidase (GBA) gene was scanned by use of a set of six amplicons, comprising 11 exons, all exon/intron boundaries, and the promoter region. By use of this screening strategy, the difficulties due to the existence of a highly homologous pseudogene were easily overcome, and both GD mutant alleles were identified in all 25 patients studied, thus attesting to a sensitivity that approaches 100%. A total of 18 different mutations and a new glucocerebrosidase haplotype were detected. The mutational spectrum included eight novel acid beta-glucosidase mutations: IVS2 G(+1)-->T, I119T, R170P, N188K, S237P, K303I, L324P, and A446P. These data further indicate the genetic heterogeneity of the lesions causing GD. Established genotype/phenotype correlations generally were confirmed, but notable disparities were disclosed in several cases, thus underlining the limitation in the prognostic value of genotyping. The observed influence of multifactorial control on this monogenic disease is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号