首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
Recombinant cytochrome c peroxidase (CcP) and a W51A mutant of CcP, in contrast to other classical peroxidases, react with phenylhydrazine to give sigma-bonded phenyl-iron complexes. The conclusion that the heme iron is accessible to substrates is supported by the observation that CcP and W51A CcP oxidize thioanisole to the racemic sulfoxide with quantitative incorporation of oxygen from H2O2. Definitive evidence for an open active site is provided by stereoselective epoxidation by both enzymes of styrene, cis-beta-methylstyrene, and trans-beta-methylstyrene. trans-beta-methylstyrene yields exclusively the trans-epoxide, but styrene yields the epoxide and phenylacetaldehyde, and cis-beta-methylstyrene yields both the cis- and trans-epoxides and 1-phenyl-2-propanone. The sulfoxide, stereoretentive epoxides, and 1-phenyl-2-propanone are formed by ferryl oxygen transfer mechanisms because their oxygen atom derives from H2O2. In contrast, the oxygen in the trans-epoxide from the cis-olefin derives primarily from molecular oxygen and is probably introduced by a protein cooxidation mechanism. cis-[1,2-2H]-1-Phenyl-1-propene is oxidized to [1,1-2H]-1-phenyl-2-propanone without a detectable isotope effect on the epoxide:ketone product ratio. The phenyl-iron complex is not formed and substrate oxidation is not observed when the prosthetic group is replaced by delta-meso-ethylheme. CcP thus has a sufficiently open active site to form a phenyl-iron complex, to oxidize thioanisole to the sulfoxide, and to epoxidize styrene and beta-methylstyrene. The results indicate that a ferryl (Fe(IV) = O)/protein radical pair can be coupled to achieve two-electron oxidations. The unique ability of CcP to catalyze monooxygenation reactions does not conflict with its peroxidase function because cytochrome c is oxidized at a distinct surface site (DePillis, G. D., Sishta, B. P., Mauk, A. G., and Ortiz de Montellano, P. R. (1991) J. Biol. Chem. 266, 19334-19341).  相似文献   

2.
Thianthrene 5-oxide (T-5-O), which is oxidized to the 5,10- and 5,5-dioxides, respectively, by electrophilic and nucleophilic agents, has been used to determine the electronic properties of hemoprotein oxidizing species. Cytochrome P450 oxidizes T-5-O to the 5,10- rather than the 5,5-dioxide but oxidizes the 5,5-dioxide rapidly and the 5,10-dioxide slowly to the 5,5,10-trioxide. Chloroperoxidase oxidizes T-5-O to the 5,10-dioxide but very poorly oxidizes it further to the 5,5,10-trioxide. It does, however, readily oxidize the 5,5-dioxide to the trioxide. The oxidizing species of cytochrome P450 and chloroperoxidase are thus comparably electrophilic, but the former is more powerful. T-5-O is not detectably oxidized by horseradish peroxidase/H2O2 but is oxidized exclusively to the 5,5-dioxide when the peroxide is replaced by dihydroxyfumaric acid (DHFA). The oxygen incorporated into the 5,5-dioxide in this reaction derives from molecular oxygen. This is consistent with the involvement of a DHFA-derived co-oxidizing species. Oxidation of T-5-O by human hemoglobin and H2O2 yields the 5,5- and 5,10-dioxides and the 5,5,10-trioxide. The oxygen in these products derives primarily (greater than 80%) from H2O2. Hemoglobin and H2O2 thus form both a P450-like electrophilic oxidant (5,10-dioxide) and a peroxide-derived nucleophilic oxidant (5,5-dioxide). A large difference in the cis:trans ratios of the 5,10-dioxides produced from T-5-O by cytochrome P450 (1.3:1) and chloroperoxidase (2.5:1) vs hemoglobin (0.1:1) suggests that the hemoglobin active site severely constrains the geometry of the electrophilic oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
NADPH-dependent oxidation of 1,3-butadiene by mouse liver microsomes or H2O2-dependent oxidation by chloroperoxidase produced both butadiene monoxide and crotonaldehyde; methyl vinyl ketone and 2,3- and 2,5- dihydrofuran were not detected. The crotonaldehyde to butadiene monoxide ratio remained constant over time in both the microsomal and the chloroperoxidase reactions; however, much more crotonaldehyde was produced by chloroperoxidase than microsomes; crotonaldehyde was not detected when reference samples of butadiene monoxide were used in control incubations containing NADPH and microsomes or H2O2 and chloroperoxidase. Moreover, incubations of 1,3-butadiene with horseradish peroxidase and H2O2, or microsomes and H2O2 or arachidonic acid did not result in the oxidation of 1,3-butadiene. In microsomes, metabolite formation was dependent on incubation time, NADPH, and protein concentrations and did not change when the 1,3-butadiene pressure was varied between 24 and 52 cm Hg. Inclusion of the cytochrome P450 inhibitor 1-benzylimidazole inhibited 1,3-butadiene metabolism, but inclusion of KCN, catalase, or superoxide dismutase had no effect. These results support the role of cytochrome P450 in 1,3-butadiene oxidation by mouse liver microsomes. The formation of crotonaldehyde but not methyl vinyl ketone by cytochrome P450 or chloroperoxidase indicates regioselectivity in the oxygen transfer from the hemoproteins to 1,3-butadiene. The intermediates formed may undergo either ring closure to form butadiene monoxide or a hydrogen shift to form 3-butenal which tautomerizes to produce crotonaldehyde. Evidence for this tautomerization was obtained by the finding that 3-buten-1-ol, an alternative precursor of 3-butenal, was oxidized to crotonaldehyde under incubation conditions similar to that used for 1,3-butadiene.  相似文献   

4.
Methemoglobin and metmyoglobin catalyze the H2O2-dependent oxidation of styrene to styrene oxide and benzaldehyde. The formation of styrene oxide requires molecular oxygen as well as H2O2 but does not, as shown by inhibitor studies, involve the superoxide or hydroxyl radicals. Approximately 38, 67, and 78% of the oxygen in styrene oxide derives from 18O2 in the reactions catalyzed, respectively, by bovine hemoglobin, sperm whale myoglobin, and equine heart myoglobin, whereas 70, 55, and 35% of the oxygen can be shown to be derived from [18O]H2O2. However, a larger fraction of the epoxide oxygen than suggested by the labeling data (perhaps all) derives from molecular oxygen rather than H2O2 because the hemoproteins produce molecular oxygen from the peroxide. The epoxidation of styrene by methemoglobin gives equal amounts of the R and S enantiomers and, as shown by studies with trans-[1-2H]styrene, proceeds with partial (33%) loss of the olefin stereochemistry. The results are rationalized by H2O2-dependent formation of a protein radical that combines with molecular oxygen to give a protein-peroxy radical that oxidizes styrene.  相似文献   

5.
Several mixed-function oxidation systems catalyze inactivation of Escherichia coli glutamine synthetase and other key metabolic enzymes. In the presence of NADPH and molecular oxygen, highly purified preparations of cytochrome P-450 reductase and cytochrome P-450 (isozyme 2) from rabbit liver microsomes catalyze enzyme inactivation. The inactivation reaction is stimulated by Fe(III) or Cu(II) and is inhibited by catalase, Mn(II), Zn(II), histidine, and the metal chelators o-phenanthroline and EDTA. The inactivation of glutamine synthetase is highly specific and involves the oxidative modification of a histidine in each glutamine synthetase subunit and the generation of a carbonyl derivative of the protein which forms a stable hydrazone when treated with 2,4-dinitrophenylhydrazine. We have proposed that the mixed-function oxidation system (the cytochrome P-450 system) produces Fe(II) and H2O2 which react at the metal binding site on the glutamine synthetase to generate an activated oxygen species which oxidizes a nearby susceptible histidine. This thesis is supported by the fact that (a) Mn(II) and Zn(II) inhibit inactivation and also interfere with the reduction of Fe(III) to Fe(II) by the P-450 system; (b) Fe(II) and H2O2 (anaerobically), in the absence of a P-450 system, catalyze glutamine synthetase inactivation; (c) inactivation is inhibited by catalase; and (d) hexobarbital, which stimulates the rate of H2O2 production by the P-450 system, stimulates the rate of glutamine synthetase inactivation. Moreover, inactivation of glutamine synthetase by the P-450 system does not require complex formation because inactivation occurs when the P-450 components and the glutamine synthetase are separated by a semipermeable membrane. Also, if endogenous catalase is inhibited by azide, rabbit liver microsomes catalyze the inactivation of glutamine synthetase.  相似文献   

6.
Incubation of horseradish peroxidase with phenylhydrazine and H2O2 markedly depresses the catalytic activity and the intensity, but not position, of the Soret band. Approximately 11-13 mol of phenylhydrazine and 25 mol of H2O2 are required per mol of enzyme to minimize the chromophore intensity. The enzyme retains some activity after such treatment, but this activity is eliminated if the enzyme is isolated and reincubated with phenylhydrazine. The prosthetic heme of the enzyme does not react with phenylhydrazine to give a sigma-bonded phenyl-iron complex, as it does in other hemoproteins, but is converted instead to the delta-mesophenyl and 8-hydroxymethyl derivatives. The loss of activity is due more to protein than heme modification, however. The inactivated enzyme reacts with H2O2 to give a spectroscopically detectable Compound I. The results imply that substrates interact with the heme edge rather than with the activated oxygen of Compounds I and II and specifically identify the region around the delta-meso-carbon and 8-methyl group as the exposed sector of the heme. Horseradish peroxidase, in contrast to cytochrome P-450, generally does not catalyze oxygen-transfer reactions. The present results indicate that oxygen-transfer reactions do not occur because the activated oxygen and the substrate are physically separated by a protein-imposed barrier in horseradish peroxidase.  相似文献   

7.
We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.  相似文献   

8.
Rat liver cytochrome P-450 mediates a novel reaction between equimolar quantities of dissolved oxygen and organic hydroperoxides. The reaction shares some of the properties of both NADPH-O2 dependent hydroxylation and NADPH-O2 independent peroxidase reactions, but does not require either NADPH, phosphatidylcholine, or any substrates other than hydroperoxide and oxygen. It proceeds at a rate approximately 100 times faster than other well known P-450 hydroxylation reactions. Monitoring the rate of O2 consumption in this novel reaction may be a simple and rapid means for studying the kinetics of cytochrome P-450.  相似文献   

9.
Incubation of iodosylbenzene and [125I]iodobenzene with cytochrome P-450 (P-450) leads to the formation of [125I]iodosylbenzene (Burka, L.T., Thorsen, A., and Guengerich, F.P. (1980) J. Am. Chem. Soc. 102, 7615-7616), but to date it has not been possible to observe directly the oxidation of organic halides in NADPH-supported P-450 reactions because of the intrinsic instability of haloso compounds. 4-tert-Butyl-2,5-bis[1-hydroxy-1-(trifluoromethyl)- 2,2,2-trifluoroethyl]iodobenzene (RI) and the corresponding bromine analog (RBr) were utilized as model compounds because their oxidized derivatives (iodinane and brominane) are relatively stable. Several model metalloporphyrins efficiently oxidized RI to the iodinane in the presence of iodosylbenzene. Rates of reduction of Mn(V) = O tetraphenylporphin chloride by RI were considerably faster than for several other organic halides. NADPH-fortified rat liver microsomes oxidized RI to the iodinane, identified by its chromatographic retention time and characteristic UV spectrum. Purified P-450 enzymes also catalyzed the oxidation of RI to the iodinane; more selectivity among individual proteins was seen when the reaction was supported by NADPH and NADPH-P-450 reductase than by iodosylbenzene. Free thiol groups in P-450 and NADPH-P-450 reductase could be oxidized by iodosylbenzene, the iodinane or brominane, or by incubation with NADPH and RI or other organic halides. These results provide evidence that P-450 can oxidize organic halogen atoms. Iodo compounds are definitely oxidized, even though the apparent oxidation-reduction potential differences seem unfavorable. The halogen order seen for the reaction is a function of the oxidation potential. Organic bromine compounds are probably also oxidized by P-450, although the rates are much slower. Chloroperoxidase did not oxidize RI to the iodinane but horseradish peroxidase did so at a lower rate; in this case the iodinane is postulated to form via electron abstraction without oxygen transfer.  相似文献   

10.
The cytochrome P450 enzyme systems catalyze the metabolism of a wide variety of naturally occurring and foreign compounds by reactions requiring NADPH and O2. Cytochrome P450 also catalyzes peroxide-dependent hydroxylation of substrates in the absence of NADPH and O2. Peroxidases such as chloroperoxidase and horseradish peroxidase catalyze peroxide-dependent reactions similar to those catalyzed by cytochrome P450. The kinetic and chemical mechanisms of the NADPH and O2-supported dealkylation reactions catalyzed by P450 have been investigated and compared with those catalyzed by P450 and peroxidases when the reactions are supported by peroxides. Detailed kinetic studies demonstrated that chloroperoxidase- and horseradish peroxidase-catalyzed N-demethylations proceed by a Ping Pong Bi Bi mechanism whereas P450-catalyzed O-dealkylations proceed by sequential mechanisms. Intramolecular isotope effect studies demonstrated that N-demethylations catalyzed by P450s and peroxidases proceed by different mechanisms. Most hemeproteins investigated catalyzed these reactions via abstraction of an alpha-carbon hydrogen whereas reactions catalyzed by P-450 and chloroperoxidase proceeded via an initial one-electron oxidation followed by alpha-carbon deprotonation. 18O-Labeling studies of the metabolism of NMC also demonstrated differences between the peroxidases and P450s. Because the hemeprotein prosthetic groups of P450, chloroperoxidase, and horseradish peroxidase are identical, the differences in the catalytic mechanisms result from differences in the environments provided by the proteins for the heme active site. It is suggested that the axial heme-iron thiolate moiety in P450 and chloroperoxidase may play a critical role in determining the mechanism of N-demethylation reactions catalyzed by these proteins.  相似文献   

11.
The hydroxyl radical-mediated oxidation of 5,5-dimethyl-1-pyrroline N-oxide, benzene, ketomethiolbutyric acid, deoxyribose, and ethanol, as well as superoxide anion and hydrogen peroxide formation was quantitated in reconstituted membrane vesicle systems containing purified rabbit liver microsomal NADPH-cytochrome P-450 reductase and cytochromes P-450 LM2, P-450 LMeb , or P-450 LM4, and in vesicle systems devoid of cytochrome P-450. The presence of cytochrome P-450 in the membranes resulted in 4-8-fold higher rates of O-2, H2O2, and hydroxyl radical production, indicating that the oxycytochrome P-450 complex constitutes the major source for superoxide anions liberated in the system, giving as a consequence hydrogen peroxide and also, subsequently, hydroxyl radicals formed in an iron-catalyzed Haber-Weiss reaction. Depletion of contaminating iron in the incubation systems resulted in small or negligible rates of cytochrome P-450-dependent ethanol oxidation. However, small amounts (1 microM) of chelated iron (e.g. Fe3+-EDTA) enhanced ethanol oxidation specifically when membranes containing the ethanol and benzene-inducible form of cytochrome P-450 (cytochrome P-450 LMeb ) were used. Introduction of the Fe-EDTA complex into P-450 LMeb -containing incubation systems caused a decrease in hydrogen peroxide formation and a concomitant 6-fold increase in acetaldehyde production; consequently, the rate of NADPH consumption was not affected. In iron-depleted systems containing cytochrome P-450 LM2 or cytochrome P-450 LMeb , an appropriate stoichiometry was attained between the NADPH consumed and the sum of hydrogen peroxide and acetaldehyde produced. Horseradish peroxidase and scavengers of hydroxyl radicals inhibited the cytochrome P-450 LMeb -dependent ethanol oxidation both in the presence and in the absence of Fe-EDTA. The results are not consistent with a specific mechanism for cytochrome P-450-dependent ethanol oxidation and indicate that hydroxyl radicals, formed in an iron-catalyzed Haber-Weiss reaction and in a Fenton reaction, constitute the active oxygen species. Cytochrome P-450-dependent ethanol oxidation under in vivo conditions would, according to this concept, require the presence of non-heme iron and endogenous iron chelators.  相似文献   

12.
R Chiang  R Makino  W E Spomer  L P Hager 《Biochemistry》1975,14(19):4166-4171
The oxidation state of the two half-cystine residues in the native ferric form of chloroperoxidase and in the reduced ferrous chloroperoxidase has been examined in order to evaluate the role of sulfhydryl groups as determinants of P-450 type spectra. M?ssbauer and optical spectroscopy studies indicate that the ferrous forms of P-450cam and chloroperoxidase have very similar or identical heme environments. Model studies have suggested that sulfhydryl groups may function as axial ligands for developing P-450 character. However, chemical studies involving both sulfhydryl reagents and amperometric titrations show that neither the ferric nor the chemically produced ferrous forms of chloroperoxidase contain a sulfhydryl group. These results rule out the hypothesis that sulfhydryl groups are unique components for P-450 absorption characteristics. The optical and electron paramagnetic resonance (EPR) spectra of the nitric oxide complex of chloroperoxidase have been obtained and compared to those of myoglobin, hemoglobin, and cytochrome c and horseradish peroxidase. The EPR spectrum of the NO-ferrous chloroperoxidase complex, which is similar to that of cytochrome P-450cam, does not show the extra nitrogen hyperfine structure which appears to be characteristic of those hemoproteins which have a nitrogen atom as an axial heme ligand.  相似文献   

13.
Epoxidation of alkenes by chloroperoxidase catalysis   总被引:1,自引:0,他引:1  
Chloroperoxidase from Caldariomyces fumago catalyzes the peroxidation of alkenes to epoxides. This enzyme is the only haloperoxidase of four tested capable of carrying out the reaction. These results further establish chloroperoxidase as a unique haloperoxidase, and adds this enzyme to the short list of other enzymes (e.g., cytochrome P-450) known to epoxidize alkenes.  相似文献   

14.
Ferric bleomycin was tested for its ability to catalyze a set of six oxidative reactions characteristic of the heme-containing proteins, cytochrome P-450 and chloroperoxidase. These reactions included peroxyacid decarboxylation and aliphatic hydroxylation as typical cytochrome P-450 chemistries. Peroxyacid-supported oxygen evolution and hydrogen peroxide-mediated chlorination were utilized as characteristic chloroperoxidase reactivities. A typical peroxidative reaction and heteroatom dealkylation, common to both O2 activating enzymes, were also studied. Bleomycin was found to catalyze peroxidation of o-dianisidine. The ferric drug complex was found competent in carrying out N-demethylation of N,N-dimethylaniline when peroxides or peroxyacids or iodosobenzene were used as the oxidants. N-Demethylation was not achieved when N,N-dimethylaniline-N-oxide was substituted as the oxidant under similar conditions. Hydroxylation of cumene and decarboxylation of phenylperacetic acid were not found to be catalyzed by bleomycin. Oxygen evolution from m-chloroperbenzoic acid and chlorination of monochlorodimedone from chloride ion and hydrogen peroxide were found to be catalyzed by bleomycin. Cytochrome P-450cam was also evaluated for O2 evolution, and halogenation activity and was found not to demonstrate such reactivities. The results of this initial survey, along with those of previous studies, appear to indicate that the chemical reactivity of bleomycin can be more closely aligned with the reactivities demonstrated by chloroperoxidase than those of cytochrome P-450.  相似文献   

15.
Benzphetamine demethylase and aniline hydroxylase activities were determined with various hemoproteins including indoleamine 2,3-dioxygenase in a cytochrome P-450-like reconstituted system containing NADPH, NADPH-cytochrome P-450 reductase, and O2. The highest specific activities, almost comparable to those of liver microsomal cytochrome P-450, were detected with indoleamine 2,3-dioxygenase from the rabbit intestine. The indoleamine 2,3-dioxygenase-catalyzed benzphetamine demethylation reaction was inhibited by catalase but not by superoxide dismutase. Exogenous H2O2 or organic hydroperoxides was able to replace the reducing system and O2. The stoichiometry of H2O2 added to the product formed was essentially unity. These results indicate that the dioxygenase catalyzes the demethylation reaction by the so-called "peroxygenation" mechanism using H2O2 generated in the reconstituted system. On the other hand, the dioxygenase-catalyzed aniline hydroxylation reaction was not only completely inhibited by catalase but also suppressed by superoxide dismutase by about 60%. Although the O2- and H2O2-generating system (e.g. hypoxanthine-xanthine oxidase) was also active as the reducing system, neither exogenous H2O2 nor the generation of O2- in the presence of catalase supported the hydroxylation reaction, indicating that both H2O2 and O2- were essential for the hydroxylation reaction. However, typical scavengers for hydroxyl radical and singlet oxygen were not inhibitory. These results suggest that a unique, as yet unidentified active oxygen species generated by H2O2 and O2- participates in the dioxygenase-mediated aniline hydroxylation reaction.  相似文献   

16.
Highly-purified rat liver microsomal cytochrome P-450 converted cyclohexane to cyclohexanol in the presence of iodosobenzene. Oxygen from 18O-iodosobenzene was not incorporated into cyclohexanol but oxygen from H218O was readily incorporated. Cytochrome P-450 catalyzed the facile exchange of oxygen between iodosobenzene and water but neither cytochrome P-420 nor the apoenzyme did. Under these conditions cytochrome P-450 readily incorporated oxygen from 18O2 into cyclohexanol in the presence of NADPH-cytochrome P-450 reductase and NADPH. The results are interpreted in a mechanism in which cytochrome P-450 forms a common hydroxylating species in the presence of iodosobenzene or O2 plus NADPH.  相似文献   

17.
The yeast-like fungus Exophiala jeanselmei degrades styrene via initial oxidation of the vinyl side chain to phenylacetic acid, which is subsequently hydroxylated to homogentisic acid. The initial reactions are catalyzed by a NADPH- and flavin adenine dinucleotide-dependent styrene monooxygenase, a styrene oxide isomerase, and a NAD(+)-dependent phenylacetaldehyde dehydrogenase. The reduced CO-difference spectrum of microsomal preparations of styrene-grown cells shows a characteristic absorption maximum at 450 nm, which strongly suggests the involvement of a cytochrome P-450-dependent styrene monooxygenase. Inhibition of styrene monooxygenase activity in cell extracts by cytochrome P-450 inhibitors SKF-525-A, metyrapone, and CO confirms this assumption.  相似文献   

18.
The application of cytochrome P-450 in substrate conversion is complicated both due to the limited stability and the cofactor regeneration problems. To overcome the disadvantages of NADPH consumption the transfer of the reduction equivalents from an electrode into the cytochrome P-450-system was studied: 1. NADPH was cathodically reduced at a mercury pool electrode. By immobilization of NADP on dialdehyde Sephadex the reductive recycling was possible. 2. Different forms of reduced oxygen were produced by the cathode: a) The reaction of O2- with deoxycorticosterone yields a carboxylic acid derivative. In contrast the cytochrome P-450 catalyzed NADPH-dependent reaction with the same substrate gives corticosterone, O2- represents only an intermediate in the activation of oxygen and is not the "activated oxygen" species. b) Molecular oxygen was reduced to HO2- and H2O2, respectively. The interaction of adsorbed cytochrome P-450 on the electrode surface with the reduced oxygen species in the absence of NADPH was studied. The electrochemically generated peroxide seems to be more active than added H2O2. 3. In a model of electro-enzyme-reactor several substrates were hydroxylated by microsomal cytochrome P-450 with cathodically reduced oxygen which substitutes NADPH.  相似文献   

19.
The H2O2 dependent catalysis of cytochrome P-450 was compared with the catalytic mechanism of horse radish peroxidase, methemoglobin and iron protoporphyrin complexes. A relatively stable intermediate being comparable to compound I of horse radish peroxidase is formed in the case of iron porphyrin complexes, methemoglobin and probably cytochrome P-450. In the case of peroxidase compound II is the more stable intermediate. This could be the reason for the different catalytic properties of peroxidase on the one hand and iron porphyrin complexes, methemoglobin and cytochrome P-450 on the other hand.  相似文献   

20.
Films of human cytochrome P450 1A2 (cyt P450 1A2) and polystyrene sulfonate were constructed on carbon cloth electrodes using layer-by-layer alternate absorption and evaluated for electrochemical- and H(2)O(2)-driven enzyme-catalyzed oxidation of styrene to styrene oxide. At -0.6 V vs. saturated calomel reference electrode in an electrochemical cell, epoxidation of styrene was mediated by initial catalytic reduction of dioxygen to H(2)O(2) which activates the enzyme for the catalytic oxidation. Slightly larger turnover rates for cyt P450 1A2 were found for the electrolytic and H(2)O(2) (10 mM) driven reactions compared to conventional enzymatic reactions using cyt P450s, reductases, and electron donors for cytochromes P450 1A2. Cyt P450(cam) gave comparable turnover rates in film electrolysis and solution reactions. Results demonstrate that cyt P450 1A2 catalyzes styrene epoxidation faster than cyt P450(cam), and suggests the usefulness of this thin-film electrolytic method for relative turnover rate studies of cyt P450s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号