首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: SR family and SR-related proteins assemble on exonic splicing enhancer (ESE) sequences to promote both constitutive and regulated splicing. The SRm160 splicing coactivator, an SR-related nuclear matrix protein of 160 kDa, is important for the splicing of specific constitutive and ESE-dependent pre-mRNAs. RESULTS: In the present study, we show that SRm160 is required to promote pre-mRNA splicing mediated by a large population of functional ESE sequences within a randomized 18 nucleotide sequence. This suggests that it functions as a general coactivator by interacting with different SR family/SR-related proteins bound to different ESE sequences. Consistent with this, several SR family and SR-related proteins coimmunoprecipitated specifically with SRm160 in the presence of low salt. We used RNA interference (RNAi) in Caenorhabditis elegans to determine whether interactions between CeSRm160 and different CeSR family proteins are important in a whole-organism context. Previously we showed that RNAi of CeSRm160 and individual CeSR family genes other than CeSF2/ASF results in no obvious phenotype, which is indicative of gene redundancy. In the present study, we demonstrate that RNAi of CeSRm160 in combination with any CeSR family gene results in the production of unfertilized oocytes by the injected mother. CONCLUSIONS: The observation that simultaneous suppression of CeSRm160 and individual CeSR family proteins results in a distinct phenotype is indicative of critical functional interactions between these factors. Our results provide biochemical and genetic evidence indicating that interactions between SRm160 and multiple SR family proteins are important for both optimal splicing activity and for proper development.  相似文献   

3.
The SRm160/300 splicing coactivator subunits   总被引:10,自引:1,他引:9       下载免费PDF全文
The SRm160/300 splicing coactivator, which consists of the serine/arginine (SR)-related nuclear matrix protein of 160 kDa and a 300-kDa nuclear matrix antigen, functions in splicing by promoting critical interactions between splicing factors bound to pre-mRNA, including snRNPs and SR family proteins. In this article we report the isolation of a cDNA encoding the 300-kDa antigen and investigate the activity of it and SRm160 in splicing. Like SRm160, the 300-kDa antigen contains domains rich in alternating S and R residues but lacks an RNA recognition motif; the protein is accordingly named "SRm300." SRm300 also contains a novel and highly conserved N-terminal domain, several unique repeated motifs rich in S, R, and proline residues, and two very long polyserine tracts. Surprisingly, specific depletion of SRm300 does not prevent the splicing of pre-mRNAs shown previously to require SRm160/300. Addition of recombinant SRm160 alone to SRm160/300-depleted reactions specifically activates splicing. The results indicate that SRm160 may be the more critical component of the SRm160/300 coactivator in the splicing of SRm160/300-dependent pre-mRNAs.  相似文献   

4.
The multiple isoforms of the transmembrane glycoprotein CD44 are produced by alternative RNA splicing. Expression of CD44 isoforms containing variable 5 exon (v5) correlates with enhanced malignancy and invasiveness of some tumors. Here we demonstrate that SRm160, a splicing coactivator, regulates CD44 alternative splicing in a Ras-dependent manner. Overexpression of SRm160 stimulates inclusion of CD44 v5 when Ras is activated. Conversely, small interfering RNA (siRNA)-mediated silencing of SRm160 significantly reduces v5 inclusion. Immunoprecipitation shows association of SRm160 with Sam68, a protein that also stimulates v5 inclusion in a Ras-dependent manner, suggesting that these two proteins interact to regulate CD44 splicing. Importantly, siRNA-mediated depletion of CD44 v5 decreases tumor cell invasion. Reduction of SRm160 by siRNA transfection downregulates the endogenous levels of CD44 isoforms, including v5, and correlates with a decrease in tumor cell invasiveness.  相似文献   

5.
Precursor (pre)-mRNA splicing can impact the efficiency of coupled steps in gene expression. SRm160 (SR-related nuclear matrix protein of 160 kDa), is a splicing coactivator that also functions as a 3'-end cleavage-stimulatory factor. Here, we have identified an evolutionary-conserved SRm160-interacting protein, referred to as hRED120 (for human Arg/Glu/Asp-rich protein of 120 kDa). hRED120 contains a conventional RNA recognition motif and, like SRm160, a PWI nucleic acid binding domain, suggesting that it has the potential to bridge different RNP complexes. Also, similar to SRm160, hRED120 associates with snRNP components, and remains associated with mRNA after splicing. Simultaneous suppression in Caenorhabditis elegans of the ortholog of hRED120 with the orthologs of splicing and 3'-end processing factors results in aberrant growth or developmental defects. These results suggest that RED120 may function to couple splicing with mRNA 3'-end formation.  相似文献   

6.
7.
New information about the pathway of eukaryotic gene expression indicates that many of the steps in this pathway are functionally interconnected. An important link has recently emerged between pre-mRNA splicing and the post-splicing events such as mRNA export and mRNA decay. Recent results reveal that the coupling is mediated by a novel group of nuclear mRNA-binding proteins that are recruited to the mRNAs by spiceosome. These proteins, including Y14, Aly/REF, RNPS1, SRm160, and DEK, are assembled into a stable complex near exon-exon junctions of spliced mRNAs. Several of them persist in their attachment to mRNAs in the cytoplasm thus communicating the history of splicing to the downstream events. The detailed mechanism of coupling and the factors that mediate these processes remain to be determined in the coming years.  相似文献   

8.
9.
Cwc21 (complexed with Cef1 protein 21) is a 135 amino acid yeast protein that shares homology with the N-terminal domain of human SRm300/SRRM2, a large serine/arginine-repeat protein shown previously to associate with the splicing coactivator and 3′-end processing stimulatory factor, SRm160. Proteomic analysis of spliceosomal complexes has suggested a role for Cwc21 and SRm300 at the core of the spliceosome. However, specific functions for these proteins have remained elusive. In this report, we employ quantitative genetic interaction mapping, mass spectrometry of tandem affinity-purified complexes, and microarray profiling to investigate genetic, physical, and functional interactions involving Cwc21. Combined data from these assays support multiple roles for Cwc21 in the formation and function of splicing complexes. Consistent with a role for Cwc21 at the core of the spliceosome, we observe strong genetic, physical, and functional interactions with Isy1, a protein previously implicated in the first catalytic step of splicing and splicing fidelity. Together, the results suggest multiple functions for Cwc21/SRm300 in the splicing process, including an important role in the activation of splicing in association with Isy1.  相似文献   

10.
In this study, we describe a rapid immunoaffinity purification procedure for gel-free tandem mass spectrometry-based analysis of endogenous protein complexes and apply it to the characterization of complexes containing the SRm160 (serine/arginine repeat-related nuclear matrix protein of 160 kDa) splicing coactivator. In addition to promoting splicing, SRm160 stimulates 3'-end processing via its N-terminal PWI nucleic acid-binding domain and is found in a post-splicing exon junction complex that has been implicated in coupling splicing with mRNA turnover, export, and translation. Consistent with these known functional associations, we found that the majority of proteins identified in SRm160-containing complexes are associated with pre-mRNA processing. Interestingly, SRm160 is also associated with factors involved in chromatin regulation and sister chromatid cohesion, specifically the cohesin subunits SMC1alpha, SMC3, RAD21, and SA2. Gradient fractionation suggested that there are two predominant SRm160-containing complexes, one enriched in splicing components and the other enriched in cohesin subunits. Co-immunoprecipitation and co-localization experiments, as well as combinatorial RNA interference in Caenorhabditis elegans, support the existence of conserved and functional interactions between SRm160 and cohesin.  相似文献   

11.
We present a new in vitro system for characterizing the binding and mobility of enhanced green fluorescent protein (EGFP)-labeled nuclear proteins by fluorescence recovery after photobleaching in digitonin-permeabilized cells. This assay reveals that SRm160, a splicing coactivator and component of the exon junction complex (EJC) involved in RNA export, has an adenosine triphosphate (ATP)-dependent mobility. Endogenous SRm160, lacking the EGFP moiety, could also be released from sites at splicing speckled domains by an ATP-dependent mechanism. A second EJC protein, RNPS1, also has an ATP-dependent mobility, but SRm300, a protein that binds to SRm160 and participates with it in RNA splicing, remains immobile after ATP supplementation. This finding suggests that SRm160-containing RNA export, but not splicing, complexes have an ATP-dependent mobility. We propose that RNA export complexes have an ATP-regulated mechanism for release from binding sites at splicing speckled domains. In vitro fluorescence recovery after photobleaching is a powerful tool for identifying cofactors required for nuclear binding and mobility.  相似文献   

12.
Pre-mRNA splicing removes introns and leaves in its wake a multiprotein complex near the exon-exon junctions of mRNAs. This complex, termed the exon-exon junction complex (EJC), contains at least seven proteins and provides a link between pre-mRNA splicing and downstream events, including transport, localization, and nonsense-mediated mRNA decay. Using a simple whole cell lysate system we developed for in vitro splicing, we prepared lysates from cells transfected with tagged EJC proteins and studied the association of these proteins with pre-mRNA, splicing intermediates, and mRNA, as well as formation of the EJC during splicing. Three of the EJC components, Aly/REF, RNPS1, and SRm160, are found on pre-mRNA by the time the spliceosome is formed, whereas Upf3b associates with splicing intermediates during or immediately after the first catalytic step of the splicing reaction (cleavage of exon 1 and intron-lariat formation). In contrast, Y14 and magoh, which remain stably associated with mRNA after export to the cytoplasm, join the EJC during or after completion of exon-exon ligation. These findings indicate that EJC formation is an ordered pathway that involves stepwise association of components and is coupled to specific intermediates of the splicing reaction.  相似文献   

13.
Pre-mRNA splicing takes place within a dynamic ribonucleoprotein particle called the spliceosome and occurs in an ordered pathway. Although it is known that spliceosome consists of five small nuclear RNAs and at least 50 proteins, little is known about how the interaction among the proteins changes during splicing. Here we identify that SR-cyp, a Moca family of nuclear cyclophilin, interacts and colocalizes with nuclear pinin (pnn), a SR-related protein involving in pre-mRNA splicing. Nuclear pnn interacts with SR-cyp via its C-terminal RS domain. Upon SR-cyp over-expression, however, the subnuclear distribution of nuclear pnn is altered, resulting in its redistribution from nuclear speckles to a diffuse nucleoplasmic form. The diffuse subnuclear distribution of nuclear pnn is not due to epitope masking, accelerated protein turnover or post-translational modification. Furthermore, we find that SR-cyp regulates the subnuclear distribution of other SR family proteins, including SC35 and SRm300, in a similar manner as it does on nuclear pnn. This result is significant because it suggests that SR-cyp plays a general role in modulating the distribution pattern of SR-like and SR proteins, similar to that of Clk (cdc2-like kinase)/STY on SR family splicing factors. SR-cyp might direct its effect via either alteration of protein folding/conformation or of protein-protein interaction and thus may add another control level of regulation of SR family proteins and modification of their functions.  相似文献   

14.
We recently reported that spliceosomes alter messenger ribonucleoprotein particle (mRNP) composition by depositing several proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. When assembled in vitro, this so-called 'exon-exon junction complex' (EJC) contains at least five proteins: SRm160, DEK, RNPS1, Y14 and REF. To better investigate its functional attributes, we now describe a method for generating spliced mRNAs both in vitro and in vivo that either do or do not carry the EJC. Analysis of these mRNAs in Xenopus laevis oocytes revealed that this complex is the species responsible for enhancing nucleocytoplasmic export of spliced mRNAs. It does so by providing a strong binding site for the mRNA export factors REF and TAP/p15. Moreover, by serving as an anchoring point for the factors Upf2 and Upf3, the EJC provides a direct link between splicing and nonsense-mediated mRNA decay. Finally, we show that the composition of the EJC is dynamic in vivo and is subject to significant evolution upon mRNA export to the cytoplasm.  相似文献   

15.
目的:研究基因Srrm1/SRm160的可变剪接。方法:应用RT-PCR研究Srrm1/SRm160的可变剪接,通过蛋白质的翻译抑制和RNA干扰研究剪接异构体是否经历无义突变介导的mRNA降解(NMD)过程。结果:获得Srrm1/SRm160新的可变剪接异构体,该异构体产生提前终止密码子,翻译抑制和RNA干扰证实含有提前终止密码子的剪接体经过NMD而降解。结论:Srrm1/SRm160通过可变剪接和NMD调节自身的表达水平,作为剪接因子进一步调节其他基因的可变剪接。  相似文献   

16.
Eukaryotic mRNAs exist in vivo as ribonucleoprotein particles (mRNPs). The protein components of mRNPs have important functions in mRNA metabolism, including effects on subcellular localization, translational efficiency and mRNA half-life. There is accumulating evidence that pre-mRNA splicing can alter mRNP structure and thereby affect downstream mRNA metabolism. Here, we report that the spliceosome stably deposits several proteins on mRNAs, probably as a single complex of approximately 335 kDa. This complex protects 8 nucleotides of mRNA from complete RNase digestion at a conserved position 20-24 nucleotides upstream of exon-exon junctions. Splicing-dependent RNase protection of this region was observed in both HeLa cell nuclear extracts and Xenopus laevis oocyte nuclei. Immunoprecipitations revealed that five components of the complex are the splicing-associated factors SRm160, DEK and RNPS1, the mRNA-associated shuttling protein Y14 and the mRNA export factor REF. Possible functions for this complex in nucleocytoplasmic transport of spliced mRNA, as well as the nonsense-mediated mRNA decay pathway, are discussed.  相似文献   

17.
SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.  相似文献   

18.
Subcellular localization of the human proto-oncogene protein DEK   总被引:7,自引:0,他引:7  
Recent data revealed that DEK associates with splicing complexes through interactions mediated by serine/arginine-repeat proteins. However, the DEK protein has also been shown to change the topology of DNA in chromatin in vitro. This could indicate that the DEK protein resides on cellular chromatin. To investigate the in vivo localization of DEK, we performed cell fractionation studies, immunolabeling, and micrococcal nuclease digestion analysis. Most of the DEK protein was found to be released by DNase treatment of nuclei, and only a small amount by treatment with RNase. Furthermore, micrococcal nuclease digestion of nuclei followed by glycerol gradient sedimentation revealed that DEK co-sedimentates with oligonucleosomes, clearly demonstrating that DEK is associated with chromatin in vivo. Additional chromatin fractionation studies, based on the different accessibilities to micrococcal nuclease, showed that DEK is associated both with extended, genetically active and more densely organized, inactive chromatin. We found no significant change in the amount and localization of DEK in cells that synchronously traversed the cell cycle. In summary these data demonstrate that the major portion of DEK is associated with chromatin in vivo and suggest that it might play a role in chromatin architecture.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号