首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
Hemin and sodium nitroprusside, which strongly activate purified rat brain guanylate cyclase in vitro, were also found to stimulate glioma C6 and neuroblastoma M1 and N1E-115 cells to divide in serum-free medium. Hemin and sodium nitroprusside each stimulate C6 cell growth to a comparable extent. Sodium nitroprusside was less potent than hemin for inducing growth of neuroblastoma cells. Moreover, both agents when added together caused a synergic cell growth enhancement which is comparable to the synergism observed in their guanylate cyclase stimulation in vitro. These results suggest that activation of guanylate cyclase may play a role in the proliferative response to these compounds.  相似文献   

2.
We have studied receptor-mediated generation of an activator of soluble guanylate cyclase in cultured mouse neuroblastoma cells (clone N1E-115) by ESR/spin trapping spectroscopy. A spin adduct was detected during the activation of muscarinic receptors by carbamylcholine in the presence of the spin trap 3,5-dibromo 4-nitrosobenzene sulphonate (DBNBS). The spin adduct does not correspond to that originating from the free radical nitric oxide or hydroxylamine. The same adduct was generated in cytosol preparations from N1E-115 cells incubated with L-arginine, NADPH, in the presence of calcium. The use of isotopically labelled guanidino-N15-L-arginine supported the generation of a DBNBS spin trapped adduct originating from the guanidino moiety of L-arginine. Superoxide dismutase (SOD) stabilized the precursor of the spin adduct as well as the activator of soluble guanylate cyclase derived from L-arginine. Our results provide direct evidence for the receptor-mediated formation of a diffusible precursor of NO. derived from L-arginine.  相似文献   

3.
Nitric oxide (NO) has been recently shown to modulate in vitro motility, viability, the acrosome reaction (AR), and metabolism of spermatozoa in various mammalian species, but the mechanism or mechanisms through which it influences sperm functions has not been clarified. In human capacitated spermatozoa, both the intracellular cGMP level and the percentage of AR-positive cells were significantly increased after 4 h of incubation with the NO donor, sodium nitroprusside (SNP). SNP-induced AR was significantly reduced in the presence of the soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ; this block was bypassed by adding 8-bromo-cGMP, a cell-permeating cGMP analogue, to the incubation medium. Finally, Rp-8-Br-cGMPS and Rp-8-pCPT-cGMPS, two inhibitors of the cGMP-dependent protein kinases (PKGs), inhibited the SNP-induced AR. Furthermore, SNP-induced AR did not occur in Ca2+ -free medium or in the presence of the protein kinase C (PKC) inhibitor, calphostin C. This study suggests that the AR-inducing effect of exogenous NO on capacitated human spermatozoa is accomplished via stimulation of an NO-sensitive sGC, cGMP synthesis, and PKG activation. In this effect the activation of PKC is also involved, and the presence of extracellular Ca2+ is required.  相似文献   

4.
L-glutamate, N-methyl-D-aspartate (NMDA), kainate, quisqualate and sodium nitroprusside increased cyclic GMP (cGMP) level on rat whole brain cell culture. The accumulation of cGMP evoked by L-glutamate was inhibited by a NMDA antagonist MK-801, an inhibitor of guanylate cyclase methylene blue and two nitric oxide (NO) synthase inhibitors NG-monomethyl-L-arginine (L-NMMA) and L-NG-nitroarginine (NO2Arg). The inhibition of L-NMMA on cGMP level was reversed partially by addition of L-arginine. Although MK-801 was able to protect cells from neuronal injury induced by L-glutamate or by 5 h hypoxia, L-NMMA and NO2Arg were ineffective. The present study suggests that cGMP elevation mediated by NO following activation by L-glutamate is not involved in neuronal cell injury.  相似文献   

5.
Nitric oxide (NO) regulates the expression of multiple genes but in most cases its precise mechanism of action is unclear. We used baby hamster kidney (BHK) cells, which have very low soluble guanylate cyclase and cGMP-dependent protein kinase (G-kinase) activity, and CS-54 arterial smooth muscle cells, which express these two enzymes, to study NO regulation of the human fos promoter. The NO-releasing agent Deta-NONOate (ethanamine-2,2'-(hydroxynitrosohydrazone)bis-) had no effect on a chloramphenicol acetyltransferase (CAT) reporter gene under control of the fos promoter in BHK cells transfected with an empty vector or in cells transfected with a G-kinase Ibeta expression vector. In BHK cells transfected with expression vectors for guanylate cyclase, Deta-NONOate markedly increased the intracellular cGMP concentration and caused a small (2-fold) increase in CAT activity; the increased CAT activity appeared to be from cGMP activation of cAMP-dependent protein kinase. In BHK cells co-transfected with guanylate cyclase and G-kinase expression vectors, CAT activity was increased 5-fold in the absence of Deta-NONOate and 7-fold in the presence of Deta-NONOate. Stimulation of CAT activity in the absence of Deta-NONOate appeared to be largely from endogenous NO since we found that: (i) BHK cells produced high amounts of NO; (ii) CAT activity was partially inhibited by a NO synthase inhibitor; and (iii) the inhibition by the NO synthase inhibitor was reversed by exogenous NO. In CS-54 cells, we found that NO increased fos promoter activity and that the increase was prevented by a guanylate cyclase inhibitor. In summary, we found that NO activates the fos promoter by a guanylate cyclase- and G-kinase-dependent mechanism.  相似文献   

6.
The objective of this study was to examine the effects of manipulating the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on bovine oocyte nuclear maturation in vitro. Cumulus-enclosed oocytes (CEO) were recovered from abattoir-derived ovaries and cultured in M199+FCS for 7 or 21h in the presence of various molecules affecting the NO/cGMP pathway, and then fixed and stained for evaluation of the stage of nuclear maturation. Cyclic GMP levels were also measured in cumulus-oocyte complexes after 3 and 6 h of culture. The iNOS inhibitor, aminoguanidine (AG, 10 and 50 mM) and the NO donor sodium nitroprusside (SNP, 100 and 500 microM) significantly inhibited GVBD after 7h of culture. However, a lower concentration of SNP (0.01 microM) stimulated GVBD. The inhibitory effects of AG and SNP were reversible, indicating that they were not toxic effects. Although SNP (500 microM) increased cGMP levels in cumulus-oocyte complexes after 3 h of culture, the inhibitor of soluble guanylate cyclase ODQ and the protein kinase G (PKG) inhibitor KT5823 did not reverse the inhibitory effect of SNP on meiosis, suggesting that SNP does not inhibit meiosis through the cGMP/PKG pathway. Similarly, an analogue of cGMP (8-Bromo-cGMP 0.5, 1, 3, and 6 mM), as well as activation of guanylate cyclase with Protoporphyrin IX or atrial natriuretic peptide, or inhibition of the enzyme with ODQ, did not have any significant effect on GVBD after 7 h of culture, supporting the idea that the effects of AG and SNP were not due to altered cGMP levels. Atrial natriuretic peptide, Protoporphyrin IX and SNP 500 microM increased cGMP levels after 3 h but not 6 h of culture. In conclusion, soluble and particulate guanylate cyclases could be activated in bovine cumulus-oocyte complexes, but accumulation of cGMP was probably not responsible for the effects of NO on meiosis.  相似文献   

7.
Bone resorption by osteoclasts is modified by agents that affect cyclic guanosine monophosphate (cGMP), but their relative physiological roles, and what components of the process are present in osteoclasts or require accessory cells such as osteoblasts, are unclear. We studied cGMP regulation in avian osteoclasts, and in particular the roles of nitric oxide and natriuretic peptides, to clarify the mechanisms involved. C-type natriuretic peptide drives a membrane guanylate cyclase, and increased cGMP production in mixed bone cells. However, C-type natriuretic peptide did not increase cGMP in purified osteoclasts. By contrast, osteoclasts did produce cGMP in response to nitric oxide (NO) generators, sodium nitroprusside or 1-hydroxy-2-oxo-3,3-bis(3-aminoethyl)-1-triazene. These findings indicate that C-type natriuretic peptide and NO modulate cGMP in different types of bone cells. The activity of the osteoclast centers on HCI secretion that dissolves bone mineral, and both NO generators and hydrolysis-resistant cGMP analogues reduced bone degradation, while cGMP antagonists increased activity. NO synthase agonists did not affect activity, arguing against autocrine NO production. Osteoclasts express NO-activated guanylate cyclase and cGMP-dependent protein kinase (G-kinase). G-kinase reduced membrane HCI transport activity in a concentration-dependent manner, and phosphorylated a 60-kD osteoclast membrane protein, which immunoprecipitation showed is not an H+-ATPase subunit. We conclude that cGMP is a negative regulator of osteoclast activity. cGMP is produced in response to NO made by other cells, but not in response to C-type natriuretic peptide. G-kinase modulates osteoclast membrane HCI transport via intermediate protein(s) and may mediate cGMP effects in osteoclasts.  相似文献   

8.
The ubiquitous second messenger cyclic GMP (cGMP) is synthesized by soluble guanylate cyclases in response to nitric oxide (NO) and degraded by phosphodiesterases (PDE). We studied the homeostasis of cGMP in living thalamic neurons by using the genetically encoded fluorescence resonance energy transfer sensor Cygnet, expressed in brain slices through viral gene transfer. Natriuretic peptides had no effect on cGMP. Basal cGMP levels decreased upon inhibition of NO synthases or soluble guanylate cyclases and increased when PDEs were inhibited. Single cell RT-PCR analysis showed that thalamic neurons express PDE1, PDE2, PDE9, and PDE10. Basal cGMP levels were increased by the PDE2 inhibitors erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and BAY60-7550 but were unaffected by PDE1 or PDE10 inhibitors. We conclude that PDE2 regulates the basal cGMP concentration in thalamic neurons. In addition, in the presence of 3-isobutyl-1-methylxanthine (IBMX), cGMP still decreased after application of a NO donor. Probenecid, a blocker of cGMP transporters, had no effect on this decrease, leaving PDE9 as a possible candidate for decreasing cGMP concentration. Basal cGMP level is poised at an intermediate level from which it can be up or down-regulated according to the cyclase and PDE activities.  相似文献   

9.
We have demonstrated previously that atrial natriuretic factor (ANF) augments urinary, plasma and kidney cGMP levels but has no significant effect upon cAMP. Using cGMP as a marker, we searched for specific target sites involved in the action of ANF in the dog kidney, and observed no change of cGMP in the proximal tubules, a 2-fold increase over basal levels in the thick loop of Henle and a 3-fold elevation in the collecting duct. The most striking action on cGMP occurred in the glomeruli with a rise of up to 50-fold being evident at 1-2 min. after the addition of ANF. The results obtained in the absence or presence of a phosphodiesterase inhibitor support the notion that the effects of ANF were exerted at the level of guanylate cyclase stimulation rather than cGMP phosphodiesterase inhibition. The action of sodium nitroprusside (SNP), a direct stimulator of soluble guanylate cyclase, differed from that of ANF. The ability of the factor to enhance cGMP levels was correlated with the distribution of particulate guanylate cyclase. This study identifies the glomeruli and the distal part of the nephron as specific targets of ANF and implicates particulate guanylate cyclase as the enzyme targetted for the expression of its action.  相似文献   

10.
Abstract: It has been shown that nitric oxide (NO) regulates NO synthase (NOS) activity through negative feedback in cytosolic enzyme preparations in various cell types. We compared the effects of the NO-generating compounds S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) on NOS activity in intact neuroblastoma N1E-115 cells and in the cytosol obtained from the same cells. Enzyme activity was measured by the conversion of l -[3H]arginine into l -[3H]citrulline. At concentrations that elicit almost complete inhibition of NOS activity in cytosolic enzyme preparations of these cells, SIN-1 and SNP did not cause significant attenuation of enzyme activity measured at 45 min in intact cells. It is surprising that SIN-1 and SNP markedly stimulated l -[3H]citrulline formation in a time- and concentration-dependent manner when cells were incubated with the compounds for >1.5 h. Neither inhibitory nor stimulatory effects of SNAP on NOS were observed in intact N1E-115 cells. This is in contrast to the inhibitory effects of SNAP in cytosolic preparations of the enzyme. The increased NOS activity by SIN-1 or SNP in intact cells was dependent on the presence of extracellular Ca2+, suggesting that it might be due to increased Ca2+ influx. On the other hand, measurements of the activity of lactate dehydrogenase showed that there was no generalized increase in cell permeability in response to SIN-1 or SNP. There was no agreement in the rank order of potencies of these compounds in activating guanylate cyclase and in affecting NOS activity, both in broken-cell preparations and in intact cells. Thus, modulation of NOS activity by NO-releasing compounds is not dependent on cyclic GMP formation and might not be related in a simple fashion to NO generation. Alternatively, activation of guanylate cyclase and stimulation of NOS activity might require different redox species of NO. Our present findings might be of clinical relevance in relation to long-term use of NO-generating compounds as therapeutic agents.  相似文献   

11.
J A Cherner  G Singh  L Naik 《Life sciences》1990,47(7):669-677
The present study examined the effect of atrial natriuretic factor (ANF) on cGMP generation by dispersed chief cells from guinea pig stomach. ANF caused a rapid dose-dependent increase in cGMP, a 7-fold increase in cGMP caused by 1 microM ANF, with or without 3-isobutyl-1-methylxanthine present. Methylene blue reduced cGMP in response to nitroprusside but not ANF. Guanylate cyclase activity of a chief cell membrane fraction doubled in response to ANF, but was not affected by nitroprusside. ANF had no effect on guanylate cyclase activity of the soluble fraction of lysed chief cells. Dose-response curves for whole cell cGMP production and membrane guanylate cyclase activity in response to ANF were closely related. These data indicate that ANF increases chief cell cGMP production by activating particulate guanylate cyclase, providing functional evidence that chief cells possess surface membrane receptors for ANF.  相似文献   

12.
Electrophysiological recordings on retinal rod cells, horizontal cells and on-bipolar cells indicate that exogenous nitric oxide (NO) has neuromodulatory effects in the vertebrate retina. We report here endogenous NO formation in mammalian photoreceptor cells. Photoreceptor NO synthase resembled the neuronal NOS type I from mammalian brain. NOS activity utilized the substrate L-arginine (Km = 4 microM) and the cofactors NADPH, FAD, FMN and tetrahydrobiopterin. The activity showed a complete dependence on the free calcium concentration ([Ca2+]) and was mediated by calmodulin. NO synthase activity was sufficient to activate an endogenous soluble guanylyl cyclase that copurified in photoreceptor preparations. This functional coupling was strictly controlled by the free [Ca2+] (EC50 = 0.84 microM). Activation of the soluble guanylyl cyclase by endogenous NO was up to 100% of the maximal activation of this enzyme observed with the exogenous NO donor compound sodium nitroprusside. This NO/cGMP pathway was predominantly localized in inner and not in outer segments of photoreceptors. Immunocytochemically, we localized NO synthase type I mainly in the ellipsoid region of the inner segments and a soluble guanylyl cyclase in cell bodies of cone photoreceptor cells. We conclude that in photoreceptors endogenous NO is functionally coupled to a soluble guanylyl cyclase and suggest that it has a neuromodulatory role in visual transduction and in synaptic transmission in the outer retina.  相似文献   

13.
Protective effects of L-arginine were evaluated in a human ventricular heart cell model of low-volume anoxia and reoxygenation independent of alternate cell types. Cell cultures were subjected to 90 min of low-volume anoxia and 30 min of reoxygenation. L-Arginine (0-5.0 mM) was administered during the preanoxic period or the reoxygenation phase. Nitric oxide (NO) production, NO synthase (NOS) activity, cGMP levels, and cellular injury were assessed. To evaluate the effects of the L-arginine on cell signaling, the effects of the NOS antagonist N(G)-nitro-L-arginine methyl ester, NO donor S-nitroso-N-acetyl-penicillamine, guanylate cyclase inhibitor methylene blue, cGMP analog 8-bromo-cGMP, and ATP-sensitive K+ channel antagonist glibenclamide were examined. Our data indicate that low-volume anoxia and reoxygenation increased NOS activity and facilitated the conversion of L-arginine to NO, which provided protection against cellular injury in a dose-dependent fashion. In addition, L-arginine cardioprotection was achieved by the activation of guanylate cyclase, leading to increased cGMP levels in human heart cells. This action involves a glibenclamide-sensitive, NO-cGMP-dependent pathway.  相似文献   

14.
Besides its involvement in reproductive functions, estrogen protects against the development of cardiovascular diseases. The guanylate cyclase/cGMP system is known to exert potent effects on the regulation of blood pressure and electrolyte balance. We examined whether 17β-estradiol can affect soluble guanylate cyclase in PC12 cells. The results indicate that 17β-estradiol decreases cGMP levels in PC12 cells. 17β-Estradiol decreases sodium nitroprusside (SNP)-stimulated, but not atrial natriuretic factor-stimulated cGMP formation in PC12 cells, indicating that 17β-estradiol decreases cGMP levels by inhibiting the activity of soluble guanylate cyclase. 17β-Estradiol also stimulates protein tyrosine phosphatase activities in PC12 cells and dephosphorylates at least three proteins. Addition of sodium vanadate, a protein tyrosine phosphatase inhibitor, blocks the inhibitory effects of 17β-estradiol on soluble guanylate cyclase activity in PC12 cells. Furthermore, transfection of SHP-1, a protein tyrosine phosphatase, into PC12 cells inhibits both basal and SNP-stimulated guanylate cyclase activity. Amino acid analysis also reveals that the 70-kDa subunit of soluble guanylate cyclase contains the SHP-1 substrate consensus sequence. These results suggest that 17β-estradiol inhibits soluble guanylate cyclase activity through SHP-1.  相似文献   

15.
The increase in intracellular cyclic GMP concentrations in response to muscarinic-receptor activation in N1E-115 neuroblastoma cells is dependent on extracellular Ca2+ ion. The calcium ionophore A23187 can also evoke an increase in cyclic GMP in the presence of Ca2+ ion. Most (about 85%) of the guanylate cyclase activity of broken-cell preparations is found in the soluble fraction. The soluble enzyme can utilize MnGTP (Km = 55 micrometer), MgGTP (Km = 310 micrometer) and CaGTP (Km greater than 500 micrometer) as substrates. Free GTP is a strong competitive inhibitor (Ki approximately 20 micrometer). The enzyme possesses an allosteric binding site for free metal ions (Ca2+, Mg2+ and Mn2+). The membrane-bound guanylate cyclase is qualitatively similar to the soluble form, but has lower affinity for the metal-GTP substrates. Entry of Ca2+ into cells may increase cyclic GMP concentration by activating guanylate cyclase through an indirect mechanism.  相似文献   

16.
Nitric oxide (NO) acts as a signalling molecule by activating soluble guanylate cyclase and causing accumulation of the second messenger cyclic guanosine 3',5'-monophosphate (cGMP) in target cells. In order to detect the presence of NO-cGMP signalling pathway in the crayfish abdominal nervous system, accumulation of NO-induced cGMP was investigated by anti-cGMP immunochemistry. Some preparations were incubated in a high-K(+) saline containing an inhibitor of cGMP-degrading phosphodiesterase, 3-isobutyl-1-methyxanthine (IBMX), to activate NO generating neurones, which could release NO in the ganglion, and then immunohistochemistry using an anti-cGMP antibody was performed. The other preparations were incubated in NO donor, sodium nitroprusside (SNP) saline containing IBMX before anti-cGMP immunohistochemistry was performed. The distribution of cGMP-like immunoreactive neurones in high-K(+) treated preparations was similar to that of cGMP-like immunoreactive neurones in NO donor treated preparations. About 70-80 cell bodies and many neuronal branches in the neuropilar area of the ganglion were stained, although no neurones showed immunoreactivity unless preparations were activated by either high-K(+) or the NO donor. Some of them were identical neurones, and they were intersegmental ascending interneurones and motor neurones. Sensory afferents that innervates hind gut showed strong cGMP-like immunoreactivity, although no mechanosensory afferents showed any immunoreactivity. These results strongly suggest the presence of an NO-cGMP signalling pathway that regulates neuronal events in the abdominal nervous system of the crayfish.  相似文献   

17.
We colocalized nitric oxide synthase (NOS) activity in epithelial cells that surround the salivary gland duct in female Dermacentor variabilis with NADPH diaphorase histochemistry and immunohistochemistry using a polyclonal anti-endothelial NOS. Using size-exclusion chromatography, a fraction with a molecular mass of about 185 kDa that had diaphorase activity was eluted from tick salivary gland homogenate. This fraction converted arginine to citrulline with the production of nitric oxide (NO), which was detected by using electron spin resonance spectroscopy. The complete activity of the diaphorase fraction was dependent on NADPH, FAD, tetrahydrobiopterin, calmodulin, (CaM), and Ca(2+), but was not dependent on dithiothreitol. The arginine analog N(G)-monomethyl-L-arginine inhibited the activity of this fraction. NO and arginine activated soluble guanylate cyclase to produce cGMP in dopamine-stimulated isolated salivary glands. Dopamine-stimulated isolated salivary glands treated with tick saline containing either EDTA, the NOS inhibitor N(G)-nitro-L-arginine methyl ester, or the calcium/CaM binding inhibitor W-7 showed no increase in cGMP. The NO donor sodium nitroprusside significantly increased cGMP levels in unstimulated isolated salivary glands. A possible function for NO in salivation by this ixodid tick is discussed.  相似文献   

18.
The molecular mechanism of the participation of carnosine in the functioning of soluble guanylate cyclase is discussed. It is shown that carnosine inhibits the activation of soluble guanylate cyclase by sodium nitroprusside and a derivative of furoxan--1,2,5-oxadiazolo-trioxide (an NO donor). However, carnosine has no effect on stimulation of the enzyme by a structural analog of the latter compound, a furazan derivative (1,2,5-oxadiazolo-dioxide) that is not an NO donor; nor was carnosine involved in the enzyme activation by protoporphyrin IX, whose stimulatory effect is not associated with the guanylate cyclase heme. The inhibition by carnosine of guanylate cyclase activation by an NO donor is due to the interaction of carnosine with heme iron with subsequent formation of a chelate complex. It was first demonstrated that carnosine is a selective inhibitor of NO-dependent activation of guanylate cyclase and may be used for suppression of activity of the intracellular signaling system NO-soluble guanylate cyclase-cGMP, whose sharp increase is observed in malignant tumors, sepsis, septic shock, asthma, and migraine.  相似文献   

19.
This report describes part of the signaling pathway and some of the molecules involved in the auxin-induced adventitious root formation in cucumber (Cucumis sativus). Previous results showed that nitric oxide (NO) mediates the auxin response during adventitious root formation (Pagnussat et al., 2002). To determine the order of action of indole acetic acid (IAA) and NO within the signal transduction pathway and to elucidate the target molecules that are downstream of NO action, cucumber hypocotyl cuttings were submitted to a pretreatment leading to endogenous auxin depletion. The auxin depletion treatment provoked a 3-fold reduction of the root number in comparison to the nondepleted explants. The NO-donor sodium nitroprusside was able to promote adventitious rooting in auxin-depleted explants, whereas the specific NO scavenger cPTIO prevented the effect of sodium nitroprusside. The endogenous NO level was monitored in both control and auxin-depleted explants using a NO-specific fluorescent probe. The NO level was 3.5-fold higher in control (nondepleted) explants than in auxin-depleted ones. The exogenous application of IAA restored the NO concentration to the level found in nondepleted explants. Because NO activates the enzyme guanylate cyclase (GC), we analyzed the involvement of the messenger cGMP in the adventitious root development mediated by IAA and NO. The GC inhibitor LY83583 reduced root development induced by IAA and NO, whereas the cell-permeable cGMP derivative 8-Br-cGMP reversed this effect. The endogenous level of cGMP is regulated by both the synthesis via GC and its degradation by the phosphodiesterase activity. When assayed, the phosphodiesterase inhibitor sildenafil citrate was able to induce adventitious rooting in both nondepleted and auxin-depleted explants. Results indicate that NO operates downstream of IAA promoting adventitious root development through the GC-catalyzed synthesis of cGMP.  相似文献   

20.
The principal objective of this study was to test the hypothesis that nitroprusside relaxes vascular smooth muscle via the reactive intermediate, nitric oxide (NO), and that the biologic action of NO is associated with the activation of guanylate cyclase. Nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and NO elicit concentration-dependent relaxation of precontraced helical strips of bovine coronary artery. Nitroprusside, MNNG and NO also markedly activate soluble guanylate cyclase from bovine coronary arterial smooth muscle and, thereby, stimulate the formation of cyclic GMP. Three heme proteins, hemoglobin, methemoglobin and myoglobin, and the oxidant, methylene blue, abolish the coronary arterial relaxation elicited by NO. Similarly, these heme proteins, methylene blue and another oxidant, ferricyanide, markedly inhibit the activation of coronary arterial guanylate cyclase by NO, nitroprusside and MNNG. The following findings support the view that certain nitroso-containing compounds liberate NO in tissue:heme proteins, which cannot permeate cells, inhibit coronary arterial relaxation elicited by NO, but not by nitroprusside or MNNG; the vital stain, methylene blue, inhibits relaxation by NO, nitroprusside and MNNG; heme proteins and oxidants inhibit guanylate cyclase activation by NO, nitroprusside and MNNG in cell-free mixtures. The findings that inhibitors of NO-induced relaxation of coronary artery also inhibit coronary arterial guanylate cyclase activation suggest that cyclic GMP formation may be associated with coronary arterial smooth muscle relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号