共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the electromyographic (EMG) activity in four chest wall and trunk (CWT) muscles, the erector spinae, latissimus dorsi, pectoralis major, and trapezius, together with the parasternal, in four normal subjects during graded inspiratory efforts against an occlusion in both upright and seated postures. We also measured CWT EMGs in six seated subjects during inspiratory resistive loading at high and low tidal volumes [1,280 +/- 80 (SE) and 920 +/- 60 ml, respectively]. With one exception, CWT EMG increased as a function of inspiratory pressure generated (Pmus) at all lung volumes in both postures, with no systematic difference in recruitment between CWT and parasternal muscles as a function of Pmus. At any given lung volume there was no consistent difference in CWT EMG at a given Pmus between the two postures (P > 0.09). However, at a given Pmus during both graded inspiratory efforts and inspiratory resistive loading, EMGs of all muscles increased with lung volume, with greater volume dependence in the upright posture (P < 0.02). The results suggest that during inspiratory efforts, CWT muscles contribute to the generation of inspiratory pressure. The CWT muscles may act as fixators opposing deflationary forces transmitted to the vertebral column by rib cage articulations, a function that may be less effective at high lung volumes if the direction of the muscular insertions is altered disadvantageously. 相似文献
2.
Iscoe, Steve. Phrenic motoneuron discharge duringsustained inspiratory resistive loading. J. Appl.Physiol. 81(5): 2260-2266, 1996.I determinedwhether prolonged inspiratory resistive loading (IRL) affects phrenicmotoneuron discharge, independent of changes in chemical drive. Inseven decerebrate spontaneously breathing cats, the discharge patternsof eight phrenic motoneurons from filaments of one phrenic nerve weremonitored, along with the global activity of the contralateral phrenicnerve, transdiaphragmatic pressure, and fractional end-tidalCO2 levels. Discharge patterns during hyperoxic CO2 rebreathingand breathing against an IRL (2,500-4,000cmH2O · l1 · s)were compared. During IRL, transdiaphragmatic pressure increased andthen either plateaued or decreased. At the highest fractional end-tidalCO2 common to both runs,instantaneous discharge frequencies in six motoneurons were greaterduring sustained IRL than during rebreathing, when compared at the sametime after the onset of inspiration. These increased dischargefrequencies suggest the presence of a load-induced nonchemical drive tophrenic motoneurons from unidentified source(s). 相似文献
3.
The purpose of this study was to determine whether induction of either inspiratory muscle fatigue (expt 1) or diaphragmatic fatigue (expt 2) would alter the breathing pattern response to large inspiratory resistive loads. In particular, we wondered whether induction of fatigue would result in rapid shallow breathing during inspiratory resistive loading. The breathing pattern during inspiratory resistive loading was measured for 5 min in the absence of fatigue (control) and immediately after induction of either inspiratory muscle fatigue or diaphragmatic fatigue. Data were separately analyzed for the 1st and 5th min of resistive loading to distinguish between immediate and sustained effects. Fatigue was achieved by having the subjects breathe against an inspiratory threshold load while generating a predetermined fraction of either the maximal mouth pressure or maximal transdiaphragmatic pressure until they could no longer reach the target pressure. Compared with control, there were no significant alterations in breathing pattern after induction of fatigue during either the 1st or 5th min of resistive loading, regardless of whether fatigue was induced in the majority of the inspiratory muscles or just in the diaphragm. We conclude that the development of inspiratory muscle fatigue does not alter the breathing pattern response to large inspiratory resistive loads. 相似文献
4.
Neuromuscular and mechanical responses to inspiratory resistive loading during sleep 总被引:2,自引:0,他引:2
The purposes of this study were 1) to characterize the immediate inspiratory muscle and ventilation responses to inspiratory resistive loading during sleep in humans and 2) to determine whether upper airway caliber was compromised in the presence of a resistive load. Ventilation variables, chest wall, and upper airway inspiratory muscle electromyograms (EMG), and upper airway resistance were measured for two breaths immediately preceding and immediately following six applications of an inspiratory resistive load of 15 cmH2O.l-1 X s during wakefulness and stage 2 sleep. During wakefulness, chest wall inspiratory peak EMG activity increased 40 +/- 15% (SE), and inspiratory time increased 20 +/- 5%. Therefore, the rate of rise of chest wall EMG increased 14 +/- 10.9% (NS). Upper airway inspiratory muscle activity changed in an inconsistent fashion with application of the load. Tidal volume decreased 16 +/- 6%, and upper airway resistance increased 141 +/- 23% above pre-load levels. During sleep, there was no significant chest wall or upper airway inspiratory muscle or timing responses to loading. Tidal volume decreased 40 +/- 7% and upper airway resistance increased 188 +/- 52%, changes greater than those observed during wakefulness. We conclude that 1) the immediate inspiratory muscle and timing responses observed during inspiratory resistive loading in wakefulness were absent during sleep, 2) there was inadequate activation of upper airway inspiratory muscle activity to compensate for the increased upper airway inspiratory subatmospheric pressure present during loading, and 3) the alteration in upper airway mechanics during resistive loading was greater during sleep than wakefulness. 相似文献
5.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased. 相似文献
6.
Effort sensation, chemoresponsiveness, and breathing pattern during inspiratory resistive loading. 总被引:2,自引:0,他引:2
Although inspiratory resistive loading (IRL) reduces the ventilatory response to CO2 (VE/PCO2) and increases the sensation of inspiratory effort (IES), there are few data about the converse situation: whether CO2 responsiveness influences sustained load compensation and whether awareness of respiratory effort modifies this behavior. We studied 12 normal men during CO2 rebreathing while free breathing and with a 10-cmH2O.l-1.s IRL and compared these data with 5 min of resting breathing with and without the IRL. Breathing pattern, end-tidal PCO2, IES, and mouth occlusion pressure (P0.1) were recorded. Free-breathing VE/PCO2 was inversely related to an index of effort perception (IES/VE; r = -0.63, P less than 0.05), and the reduction in VE/PCO2 produced by IRL was related to the initial free-breathing VE/PCO2 (r = 0.87, P less than 0.01). IRL produced variable increases in inspiratory duration (TI), IES, and P0.1 at rest, and the change in tidal volume correlated with both VE/PCO2 (r = 0.63, P less than 0.05) and IES/VE (r = -0.69, P less than 0.05), this latter index also predicting the changes in TI with loading (r = -0.83, P less than 0.01). These data suggest that in normal subjects perception of inspiratory effort can modify free-breathing CO2 responsiveness and is as important as CO2 sensitivity in determining the response to short-term resistive loading. Individuals with good perception choose a small-tidal volume and short-TI breathing pattern during loading, possibly to minimize the discomfort of breathing. 相似文献
7.
Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects 总被引:1,自引:0,他引:1
McKenzie D. K.; Allen G. M.; Butler J. E.; Gandevia S. C. 《Journal of applied physiology》1997,82(6):2011-2019
McKenzie, D. K., G. M. Allen, J. E. Butler, and S. C. Gandevia. Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects. J. Appl. Physiol. 82(6): 2011-2019, 1997.Taskfailure during inspiratory resistive loading is thought to beaccompanied by substantial peripheral fatigue of the inspiratorymuscles. Six healthy subjects performed eight resistive breathingtrials with loads of 35, 50, 75 and 90% of maximal inspiratorypressure (MIP) with and without supplemental oxygen. MIP measuredbefore, after, and at every minute during the trial increased slightlyduring the trials, even when corrected for lung volume (e.g., for 24 trials breathing air, 12.5% increase, P < 0.05). In some trials, taskfailure occurred before 20 min (end point of trial), and in thesetrials there was an increase in end-tidalPCO2(P < 0.01), despite the absence of peripheral muscle fatigue. In four subjects (6 trials with task failure), there was no decline in twitch amplitude with bilateral phrenic stimulation or in voluntary activation of the diaphragm, eventhough end-tidal PCO2 rose by 1.6 ± 0.9%. These results suggest that hypoventilation,CO2 retention, and ultimate taskfailure during resistive breathing are not simply dependent on impairedforce-generating capacity of the diaphragm or impaired voluntaryactivation of the diaphragm. 相似文献
8.
Movement of the human upper airway during inspiration with and without inspiratory resistive loading
Cheng S Butler JE Gandevia SC Bilston LE 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,110(1):69-75
The electromyographic (EMG) activity of human upper airway muscles, particularly the genioglossus, has been widely measured, but the relationship between EMG activity and physical movement of the airway muscles remains unclear. We aimed to measure the motion of the soft tissues surrounding the airway during normal and loaded inspiration on the basis of the hypothesis that this motion would be affected by the addition of resistance to breathing during inspiration. Tagged MR imaging of seven healthy subjects was performed in a 3-T scanner. Tagged 8.6-mm-spaced grids were used, and complementary spatial modulation of magnetization images were acquired beginning ~200 ms before inspiratory airflow. Deformation of tag line intersections was measured. The genioglossus moved anteriorly during normal and loaded inspiration, with less movement during loaded inspiration. The motion of tissues at the anterior border of the upper airway was nonuniform, with larger motions inferiorly. At the level of the soft palate, the lateral dimension of the airway decreased significantly during loaded inspiration (-0.15 ± 0.09 and -0.48 ± 0.09 mm during unloaded and loaded inspiration, respectively, P < 0.05). When resistance to inspiratory flow was added, genioglossus motion and lateral dimensions of the airway at the level of the soft palate decreased. Our results suggest that genioglossus motion begins early to dilate the airway prior to airflow and that inspiratory loading reduces the anterior motion of the genioglossus and increases the collapse of the lateral airway walls at the level of the soft palate. 相似文献
9.
Phrenic motoneuron firing rates before, during, and after prolonged inspiratory resistive loading 总被引:2,自引:0,他引:2
Road, J. D., and A. M. Cairns. Phrenic motoneuronfiring rates before, during, and after prolonged inspiratory resistive loading. J. Appl. Physiol. 83(3):776-783, 1997.Phrenic motoneuron firing rates during briefinspiratory resistive loading (IRL) are high, and nearly all themotoneurons are recruited. Diaphragmatic fatigue has been difficult todemonstrate during IRL. Furthermore, evidence from studies in limbmuscles has shown variable motoneuron responses to prolongedhigh-intensity loads. We studied phrenic motoneuron firing ratesbefore, during, and after prolonged IRL in anesthetized rabbits. Of 117 phrenic axons, only 2 axons were not recruited; 41 axons were silentduring unloaded breathing but were recruited at higher loads. Silentaxons showed a more rapid increase in firing rate as the loadincreased. Phrenic motoneuron firing rates increased throughout theperiod of loading, whereas airway pressure swings did not. Afterprolonged IRL, higher motoneuron firing rates were needed during briefloads to produce the same airway pressure. No evidence of a decline inmotoneuron firing rates was seen at any point. We conclude that therespiratory muscles can be shown to demonstrate physiological responsesconsistent with fatigue during prolonged IRL, and activation rates arehigh and remain so throughout this prolonged loading. 相似文献
10.
The development of animal models of respiratory muscle training would be useful in studying the physiological effects of training. Hence, we studied the effects of chronic resistive loading (CRL) for 5 wk on mass, composition, and mechanics of inspiratory muscles in laboratory rats. CRL was produced by means of a tracheal cannula (loaded animals) and results were compared with sham-operated controls. Acutely, upper airway obstruction led to a doubling of inspiratory pleural pressure excursion and 25% decrease in respiratory rate. We observed no changes in lung pressure-volume curves, nor in the geometry of the respiratory system in loaded compared with control animals. Muscle mass normalized for body mass increased in the diaphragm (DI) and the wet weight-to-dry weight ratio increased in the sternomastoid (SM) in loaded compared with control animals. Loaded animals demonstrated a decrease in ether extractable (fat) content of the DI and SM muscles but not the gastrocnemius. For the DI there was no change in length at which active tension was maximal (Lo), but there was an increase in maximum tension at lengths close to Lo in loaded compared with control rats. Endurance did not change, although twitch tensions remained higher in loaded compared with control rats. We conclude that 1) alteration of inspiratory muscle structure and function occurs in rats with CRL; 2) the DI and SM demonstrate different adaptive responses to CRL; and 3) although maximum tension increases, endurance does not. 相似文献
11.
Oxygen cost of inspiratory loading: resistive vs. elastic 总被引:2,自引:0,他引:2
We measured the O2 cost of breathing (VO2resp) against external inspiratory elastic (E) and resistive loads (R) when end-expiratory lung volume, tidal volume, breathing frequency, work rate, and pressure-time product were matched in each of six pairs of runs in six subjects. During E, peak inspiratory mouth pressure was 65.7 +/- 1.8% (SD) of the maximum at functional residual capacity. However, during resistive runs, peak inspiratory mouth pressure was 41.1 +/- 2.8% of the maximum at functional residual capacity. In 36 paired runs, where both work rate and pressure-time product were within 10%, VO2resp for E was less than for R (81 and 96 ml/min, respectively; P less than 0.01). During loaded and unloaded breathing with the same tidal volume, we measured the changes in anteroposterior diameter of the lower rib cage in five subjects. In four subjects we also recorded the electromyograms of several fixator and stabilizing muscles. During E and R, the change in anteroposterior diameter of the lower rib cage was -116 +/- 5 and -45 +/- 4% (SE), respectively, of the unloaded value (P less than 0.01), indicating greater deformation during E. Although the peak electromyographic activity was 72 +/- 16% greater during E (P less than 0.01), there was no difference between the loads for area under the electromyogram time curve (P greater than 0.05). However, the time to 50% peak activity was less during R (P less than 0.02). We conclude that, even when work rate and pressure-time product are matched, VO2resp during R is greater than that during E. This difference may be due to preferential recruitment of faster and less efficient muscle fibers. 相似文献
12.
Diaphragmatic contractility was assessed in spontaneously breathing ketamine-anesthetized rabbits by measuring the strength of diaphragmatic contraction in response to bilateral supramaximal phrenic nerve stimulation at frequencies between 10 and 100 Hz. During 10-180 min of inspiratory resistive loading, contractility decreased by approximately 40%, and hypoxemia and both respiratory and lactic acidosis developed. After 10 min of recovery, both the response to high-frequency stimulation (100 Hz) and the arterial PO2 and PCO2 returned to base-line levels, whereas metabolic acidosis and reduced response to low-frequency stimulation (10-20 Hz) persisted. Similar levels of hypoxemia and respiratory acidosis in the absence of inspiratory resistive loading did not alter diaphragmatic contractility. We conclude that in anesthetized rabbits excessive inspiratory resistive loading results in partially reversible diaphragm fatigue of the high- and low-frequency types, accompanied by hypoventilation and lactic acidosis. 相似文献
13.
The mechanisms underlying acute respiratory failure induced by respiratory loads are unclear. We hypothesized that, in contrast to a moderate inspiratory resistive load, a severe one would elicit central respiratory failure (decreased respiratory drive) before diaphragmatic injury and fatigue. We also wished to elucidate the factors that predict endurance time and peak tracheal pressure generation. Anesthetized rats breathed air against a severe load ( approximately 75% of the peak tracheal pressure generated during a 30-s occlusion) until pump failure (fall in tracheal pressure to half; mean 38 min). Hypercapnia and hypoxemia developed rapidly ( approximately 4 min), coincident with diaphragmatic fatigue (decreased ratio of transdiaphragmatic pressure to peak integrated phrenic activity) and the detection in blood of the fast isoform of skeletal troponin I (muscle injury). At approximately 23 min, respiratory frequency and then blood pressure fell, followed immediately by secondary diaphragmatic fatigue. Blood taken after termination of loading contained cardiac troponin T (myocardial injury). Contrary to our hypothesis, diaphragmatic fatigue and injury occurred early in loading before central failure, evident only as a change in the timing but not the drive component of the central respiratory pattern generator. Stepwise multiple regression analysis selected changes in mean arterial pressure and arterial Pco(2) during loading as the principal contributing factors in load endurance time, and changes in mean arterial pressure as the principal contributing factor in peak tracheal pressure generation. In conclusion, the temporal development of respiratory failure is not stereotyped but depends on load magnitude; moreover respiratory loads induce cardiorespiratory, not just respiratory, failure. 相似文献
14.
15.
16.
L Zocchi S C Luijendijk W A Zin A Rossi J Milic-Emili 《Journal of applied physiology (Bethesda, Md. : 1985)》1984,57(3):839-849
In five spontaneously breathing anesthetized cats, we determined the inspiratory elastic (Wel), resistive (Wres), and total (WI) mechanical work rates (power) during control and first loaded inspirations through graded linear resistances (delta R) by "Campbell diagrams" based on measurement of esophageal pressure. WI did not change with delta R's up to 0.31 cmH2O X ml-1 X s, the concomitant decrease in Wel being balanced by an increase in Wres. The stability of WI in the face of delta R's was due to the vagally mediated prolongation of inspiration and the intrinsic properties of the respiratory system and of the contracting inspiratory muscles. To assess the separate contributions of volume-related and flow-related intrinsic mechanisms to the stability of WI, we made model predictions of the immediate effects of delta R's on inspiratory mechanical work output based on measurements of inspiratory driving pressure waves and passive and active respiratory resistance and elastance on the same five cats. The results suggest that the intrinsic stability of WI in the face of delta R's is provided primarily by the active elastance. 相似文献
17.
Response to inspiratory resistive loading during sleep in normal children and children with obstructive apnea. 总被引:8,自引:0,他引:8
The response to inspiratory resistance loading (IRL) of the upper airway during sleep in children is not known. We, therefore, evaluated the arousal responses to IRL during sleep in children with the obstructive sleep apnea syndrome (OSAS) compared with controls. Children with OSAS aroused at a higher load than did controls (23 +/- 8 vs. 15 +/- 7 cmH(2)O. l(-1). s; P < 0.05). Patients with OSAS had higher arousal thresholds during rapid eye movement (REM) vs. non-REM sleep (P < 0.001), whereas normal subjects had lower arousal thresholds during REM (P < 0.005). Ventilatory responses to IRL were evaluated in the controls. There was a marked decrease in tidal volume both immediately (56 +/- 17% of baseline at an IRL of 15 cmH(2)O. l(-1). min; P < 0.001) and after 3 min of IRL (67 +/- 23%, P < 0.005). The duty cycle increased. We conclude that children with OSAS have impaired arousal responses to IRL. Despite compensatory changes in respiratory timing, normal children have a decrease in minute ventilation in response to IRL during sleep. However, arousal occurs before gas-exchange abnormalities. 相似文献
18.
Fothergill, D. M., and N. A. Carlson. Effects ofN2O narcosis on breathing andeffort sensations during exercise and inspiratory resistive loading.J. Appl. Physiol. 81(4):1562-1571, 1996.The influence of nitrous oxide(N2O) narcosis on the responses toexercise and inspiratory resistive loading was studied in thirteen maleUS Navy divers. Each diver performed an incremental bicycle exercisetest at 1 ATA to volitional exhaustion while breathing a 23%N2O gas mixture and a nonnarcoticgas of the same PO2, density, andviscosity. The same gas mixtures were used during four subsequent30-min steady-state submaximal exercise trials in which the subjectsbreathed the mixtures both with and without an inspiratory resistance(5.5 vs. 1.1 cmH2O · s · l1at 1 l/s). Throughout each test, subjective ratings of respiratory effort (RE), leg exertion, and narcosis were obtained with acategory-ratio scale. The level of narcosis was rated between slightand moderate for the N2O mixturebut showed great individual variation. Perceived leg exertion and thetime to exhaustion were not significantly different with the twobreathing mixtures. Heart rate was unaffected by the gas mixture andinspiratory resistance at rest and during steady-state exercise but wassignificantly lower with the N2O mixture during incremental exercise (P < 0.05). Despite significant increases in inspiratory occlusionpressure (13%; P < 0.05),esophageal pressure (12%; P < 0.001), expired minute ventilation (4%;P < 0.01), and the work rate ofbreathing (15%; P < 0.001) when the subjects breathed the N2O mixture,RE during both steady-state and incremental exercise was 25% lowerwith the narcotic gas than with the nonnarcotic mixture(P < 0.05). We conclude that the narcotic-mediated changes in ventilation, heart rate, and RE induced by23% N2O are not of sufficientmagnitude to influence exercise tolerance at surface pressure.Furthermore, the load-compensating respiratory reflexes responsible formaintaining ventilation during resistive breathing are not depressed byN2O narcosis. 相似文献
19.
McCool F. D.; Tzelepis G. E.; Leith D. E.; Hoppin F. G. Jr 《Journal of applied physiology》1989,66(5):2045-2055
When a subject breathes against an inspiratory resistance, the inspiratory pressure, the inspiratory flow, and the lung volume at which the breathing task takes place all interact to determine the length of time the task can be sustained (Tlim). We hypothesized that the mechanism actually limiting tasks in which these parameters were varied involved the rate of energy utilization by the inspiratory muscles. To test this hypothesis, we studied four experienced normal subjects during fatiguing breathing tasks performed over a range of pressures and flows and at two different lung volumes. We assessed energy utilization by measuring the increment in the rate of whole body O2 consumption due to the breathing task (VO2 resp). Power and mean esophageal pressure correlated with Tlim but depended also on lung volume and inspiratory flow rate. In contrast, VO2 resp closely correlated with Tlim, and this relationship was not systematically altered by inspiratory flow or lung volume. The shape of the VO2 resp vs. Tlim curve was approximately hyperbolic, with high rates of VO2 resp associated with short endurance times and lower rates of VO2 resp approaching an asymptotic value at high Tlim. These findings are consistent with a mechanism whereby a critical rate of energy utilization determines the endurance of the inspiratory pump, and that rate varies with pressure, flow, and lung volume. 相似文献
20.
M Manohar 《Journal of applied physiology》1990,68(5):2177-2181
Regional distribution of diaphragmatic blood flow (Q; 15-microns-diam radionuclide-labeled microspheres) was studied in normal (n = 7) and laryngeal hemiplegic (LH; n = 7) ponies to determine whether the added stress of inspiratory resistive breathing during maximal exercise may cause 1) redistribution of diaphragmatic Q and 2) crural diaphragmatic Q to exceed that in maximally exercising normal ponies. LH-induced augmentation of already high exertional work of breathing resulted in diminished locomotor exercise capacity so that maximal exercise in LH ponies occurred at 25 km/h compared with 32 km/h for normal ponies. The costal and crural regions received similar Q in both groups at rest. However, exercise-induced increments in perfusion were significantly greater in the costal region of the diaphragm. At 25 km/h, costal diaphragmatic perfusion was 154 and 143% of the crural diaphragmatic Q in normal and LH ponies. At 32 km/h, Q in costal diaphragm of normal ponies was 136% of that in the crural region. Costal and crural diaphragmatic Q in LH ponies exercised at 25 km/h exceeded that for normal ponies but was similar to the latter during exercise at 32 km/h. Perfusion pressure for the three conditions was also similar. It is concluded that diaphragmatic perfusion heterogeneity in exercising ponies was preserved during the added stress of inspiratory resistive breathing. It was also demonstrated that vascular resistance in the crural and costal regions of the diaphragm in maximally exercised LH ponies remained similar to that in maximally exercising normal ponies. 相似文献