共查询到20条相似文献,搜索用时 281 毫秒
1.
Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction 总被引:7,自引:5,他引:7 下载免费PDF全文
《The Journal of general physiology》1984,83(3):395-415
The [Ca2+]-activated photoprotein aequorin was used to measure [Ca2+] in canine cardiac Purkinje fibers during the positive inotropic and toxic effects of ouabain, strophanthidin, and acetylstrophanthidin. The positive inotropic effect of these substances was associated with increases in the two components of the aequorin signal, L1 and L2. On the average, strophanthidin at 10(-7) M produced steady, reversible increases in L1, L2, and peak twitch tension of 20, 91, and 240%, respectively. This corresponds to increases in the upper-limit spatial average [Ca2+] from 1.9 X 10(-6) M to 2.1 X 10(-6) M at L1 and from 1.4 X 10(-6) M to 1.8 X 10(-6) M at L2. Elevation of diastolic luminescence above the control level was not detected. At higher concentrations (5 X 10(-7) M), strophanthidin produced aftercontractions, diastolic depolarization, and transient depolarizations, all of which were associated with temporally similar changes in [Ca2+]. During these events, diastolic [Ca2+] rose from the normal level of approximately 3 X 10(-7) M up to 1-2 X 10(-6) M. The negative inotropic effect of 5 X 10(-7) M strophanthidin was not associated with a corresponding decrease in the [Ca2+] transient but was associated with a change in the relationship between [Ca2+] and tension. Assuming the Na+-lag mechanism of cardiotonic steroid action, we conclude the following: at low concentrations of drug, increased Ca2+ uptake by the sarcoplasmic reticulum prevents a detectable rise in cytoplasmic [Ca2+] during diastole, but this increased Ca2+ uptake results in increased release of Ca2+ during the action potential. At higher drug concentrations, observable [Ca2+] changes during diastole activate tension and membrane conductance changes. 相似文献
2.
Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers 总被引:1,自引:1,他引:1 下载免费PDF全文
Intracellular pH (pHi) was measured with a pH-sensitive microelectrode in voltage-clamped sheep cardiac Purkinje fibers while tension was simultaneously measured. All solutions were nominally CO2/HCO3 free and were buffered with Tris. The addition of NH4Cl (5-20 mM) produced an initial intracellular alkalosis that was associated with an increase of twitch tension. At the same time, a component of voltage-dependent tonic tension developed. Prolonged exposure (greater than 5 min) to NH4Cl resulted in a slow recovery of pHi accompanied by a decrease of tension. Removal of NH4Cl produced a transient acidosis that was accompanied by a fall of force. In some experiments, there was then a transient recovery of force. If extracellular pH (pHo) was decreased, then pHi decreased slowly. Tension also fell slowly. An increase of pHo produced a corresponding increase of both force and pHi. The application of strophanthidin (10 microM) increased force and produced an intracellular acidosis. The addition of NH4Cl, to remove this acidosis partially, produced a significant increase of force. The above results show that contraction is sensitive to changes of intracellular but not extracellular pH. This pH dependence will therefore modify the contractile response to inotropic maneuvers that also affect pHi. 相似文献
3.
Extracellular [K+] fluctuations in voltage-clamped canine cardiac Purkinje fibers. 总被引:1,自引:0,他引:1 下载免费PDF全文
Membrane currents and extracellular [K+] were measured in canine Purkinje strands during voltage-clamp steps to plateau or diastolic potentials. Extracellular [K+] increased during step depolarizations and decreased during step hyperpolarizations. On hyperpolarization, the largest fraction of the K+ depletion occurred during the initial 500 ms of the voltage-clamp step and was correlated with a potassium depletion current, the id. A slower component of the depletion also occurred on hyperpolarization and had a time constant consistent with cylindrical diffusion of potassium within the Purkinje strands. On depolarization, there is an accumulation of K+ that is correlated with the plateau current ix. On termination of depolarizing test pulses, the K+ accumulation decays with a time course similar to the ix tail current. Surprisingly, no accumulation of K+ occurred during the arrhythmogenic transient inward current, TI, suggesting that the selectivity of this current should be reevaluated. 相似文献
4.
5.
Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. 总被引:7,自引:8,他引:7 下载免费PDF全文
The intracellular calcium ([Ca2+]i) transient in adult rat heart cells was examined using the fluorescent calcium indicator fluo-3 and a laser scanning confocal microscope. We find that the electrically evoked [Ca2+]i transient does not rise at a uniform rate at all points within the cell during the [Ca2+]i transient. These spatial non-uniformities in [Ca2+]i are observed immediately upon depolarization and largely disappear by the time the peak of the [Ca2+]i transient occurs. Importantly, some of the spatial non-uniformity in [Ca2+]i varies randomly in location from beat to beat. Analysis of the spatial character of the non-uniformities suggests that they arise from the stochastic nature of the activation of SR calcium-release channels. The non-uniformities in [Ca2+]i are markedly enhanced by low concentrations of Cd2+, suggesting that activation of L-type calcium channels is the primary source of activator calcium for the calcium transient. In addition, the pattern of calcium release in these conditions was very similar to the spontaneous calcium sparks that are observed under resting conditions and which are due to spontaneous calcium release from the SR. The spatial non-uniformity in the evoked [Ca2+]i transient under normal conditions can be explained by the temporal and spatial summation of a large number of calcium sparks whose activation is a stochastic process. The results are discussed with respect to a stochastic local control model for excitation-contraction (E-C) coupling, and it is proposed that the fundamental unit of E-C coupling consists of one dihydropyridine receptor activating a small group of ryanodine receptors (possibly four) in a square packing model. 相似文献
6.
Effects of caffeine, tetracaine, and ryanodine on calcium-dependent oscillations in sheep cardiac Purkinje fibers 总被引:1,自引:1,他引:1 下载免费PDF全文
Membrane current and tension were measured in voltage-clamped sheep cardiac Purkinje fibers. Elevating the intracellular calcium concentration ([Ca2+]i) results in oscillations of membrane current and tension both at rest and during stimulation. During stimulation, an oscillatory transient inward current and an after contraction follow repolarization. We have examined the effects on the oscillations of changing the extracellular calcium concentration ([Ca2+]o) and of adding various drugs. In agreement with previous work, high concentrations of drugs that affect the sarcoplasmic reticulum, namely caffeine (10-20 mM), tetracaine (1 mM), and ryanodine (10 microM), abolish the oscillations. However, at lower concentrations, these three drugs have different effects on the oscillations. Caffeine (1-2 mM) decreases the oscillation amplitude but increases the frequency. Tetracaine (100-500 microM) has little effect on the magnitude of the oscillations but decreases their frequency. Ryanodine, at all concentrations used (0.1-10 microM), eventually abolishes the oscillations but, in doing so, decreases the magnitude, leaving the frequency unaffected. When [Ca2+]o was changed in order to vary [Ca2+]i, both the frequency and the magnitude of the oscillations always changed in the same direction. This suggests that these three drugs have effects in addition to just changing [Ca2+]i. 相似文献
7.
8.
Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers 总被引:13,自引:1,他引:13 下载免费PDF全文
Spontaneous oscillatory fluctuations in membrane potential are often observed in heart cells, but their basis remains controversial. Such activity is enhanced in cardiac Purkinje fibers by exposure to digitalis or K-free solutions. Under these conditions, we find that voltage noise is generated by current fluctuations that persist when membrane potential is voltage clamped. Power spectra of current signals are not made up of single time-constant components, as expected from gating of independent channels, but are dominated by resonant characteristics between 0.5 and 2 HZ. Our evidence suggests that the periodicity arises from oscillatory variations in intracellular free Ca that control ion movements across the surface membrane. The current fluctuations are strongly cross-correlated with oscillatory fluctuations in contractile force, and are inhibited by removing extracellular Ca or exposure to D600. Chelating intracellular Ca with injected EGTA also abolishes the current fluctuations. The oscillatory mechanism may involve cycles of Ca (or Sr) movement between sarcoplasmic reticulum and myoplasm, as previously suggested for skinned cardiac preparations. Our experiments in intact cells indicate that changes in surface membrane potential can modulate cytoplasmic Ca oscillations in frequency and perhaps amplitude as well. A two-way interaction between surface membrane potential and intracellular Ca stores may be a common feature of heart, neuron, and other cell types. 相似文献
9.
Recent experiments in canine Pukinje fibers (Gadsby and Cranefield, 1979) have shown that following a period of sodium loading in K+-free solution a slowly decaying outward current is observed. This current has been attributed to the activity of the electrogenic Na+-K+ exchange pump. In the present paper we show that similar slowly decaying outward currents are observed following prolonged periods of overdrive with action potentials or with brief depolarizing voltage clamp pulses. The dependent of the prolonged outward current on the duration and frequency of the preceding period of overdrive and on the potential following overdrive is reported. We also present results which indicate that a large portion of this current can be induced by phasic Na+ loading through the fast-inward channel. 相似文献
10.
11.
The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae 总被引:4,自引:0,他引:4 下载免费PDF全文
《The Journal of general physiology》1995,105(1):1-19
The control of force by [Ca2+] was investigated in rat cardiac trabeculae loaded with fura-2 salt. At sarcomere lengths of 2.1-2.3 microns, the steady state force-[Ca2+]i relationship during tetanization in the presence of ryanodine was half maximally activated at a [Ca2+]i of 0.65 +/- 0.19 microM with a Hill coefficient of 5.2 +/- 1.2 (mean +/- SD, n = 9), and the maximal stress produced at saturating [Ca2+]i equalled 121 +/- 35 mN/mm2 (n = 9). The dependence of steady state force on [Ca2+]i was identical in muscles tetanized in the presence of the Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA). The force-[Ca2+]i relationship during the relaxation of twitches in the presence of CPA coincided exactly to that measured at steady state during tetani, suggesting that CPA slows the decay rate of [Ca2+]i sufficiently to allow the force to come into a steady state with the [Ca2+]i. In contrast, the relationship of force to [Ca2+]i during the relaxation phase of control twitches was shifted leftward relative to the steady state relationship, establishing that relaxation is limited by the contractile system itself, not by Ca2+ removal from the cytosol. Under control conditions the force-[Ca2+]i relationship, quantified at the time of peak twitch force (i.e., dF/dt = 0), coincided fairly well with steady state measurements in some trabeculae (i.e., three of seven). However, the force-[Ca2+]i relationship at peak force did not correspond to the steady state measurements after the application of 5 mM 2,3-butanedione monoxime (BDM) (to accelerate cross-bridge kinetics) or 100 microM CPA (to slow the relaxation of the [Ca2+]i transient). Therefore, we conclude that the relationship of force to [Ca2+]i during physiological twitch contractions cannot be used to predict the steady state relationship. 相似文献
12.
13.
14.
15.
Calcium- and voltage-activated plateau currents of cardiac Purkinje fibers 总被引:4,自引:3,他引:1 下载免费PDF全文
We have used the two-microelectrode voltage-clamp technique to investigate the components of membrane current that contribute to the formation of the early part of the plateau phase of the action potential of calf cardiac Purkinje fibers. 3,4-Diaminopyridine (50 microM) reduced the net transient outward current elicited by depolarizations to potentials positive to -30 mV but had no consistent effect on contraction. We attribute this effect to the blockade of a voltage-activated transient potassium current component. Ryanodine (1 microM), an inhibitor of sarcoplasmic reticulum calcium release and intracellular calcium oscillations in Purkinje fibers (Sutko, J.L., and J.L. Kenyon. 1983. Journal of General Physiology. 82:385-404), had complex effects on membrane currents as it abolished phasic contractions. At early times during a depolarization (5-30 ms), ryanodine reduced the net outward current. We attribute this effect to the loss of a component of calcium-activated potassium current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. At later times during a depolarization (50-200 ms), ryanodine increased the net outward current. This effect was not seen in low-sodium solutions and we could not observe a reversal potential over a voltage range of -100 to +75 mV. These data suggest that the effect of ryanodine on the late membrane current is attributable to the loss of sodium-calcium exchange current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. Neither effect of ryanodine was dependent on chloride ions, which suggests that chloride ions do not carry the ryanodine-sensitive current components. Strontium (2.7 mM replacing calcium) and caffeine (10 mM), two other treatments that interfere with sarcoplasmic reticulum function, had effects in common with ryanodine. This supports the hypothesis that the effects of ryanodine may be attributed to the inhibition of sarcoplasmic reticulum calcium release. 相似文献
16.
The amplitude and time course of the myoplasmic free [Ca2+] transient in fast-twitch fibers of mouse muscle 总被引:1,自引:0,他引:1 下载免费PDF全文
《The Journal of general physiology》1996,108(5):455-469
Bundles of 10-100 fibers were dissected from the extensor digitorum longus muscle of mouse, mounted in an apparatus for optical recording, and stretched to long sarcomere length (> or = 3.6 microns). One fiber within the bundle was microinjected with furaptra, a fluorescent indicator that responds rapidly to changes in myoplasmic free [Ca2+] (delta [Ca2+]). Twitches and brief tetani were initiated by external stimulation. At myoplasmic furaptra concentrations of approximately 0.1 mM, the indicator's fluorescence signal during fiber activity (delta F/F) was well resolved. delta F/F was converted to delta [Ca2+] under the assumption that furaptra's myoplasmic dissociation constant for Ca2+ is 98 microM at 16 degrees C and 109 microM at 28 degrees C. At 16 degrees C, the peak amplitude of delta [Ca2+] during a twitch was 17.8 +/- 0.4 microM (+/-SEM; n = 8) and the half-width of delta [Ca2+] was 4.6 +/- 0.3 ms. At 28 degrees C, the peak and half-width values were 22.1 +/- 1.8 microM and 2.0 +/- 0.1 ms, respectively (n = 4). During a brief high-frequency tetanus, individual peaks of delta [Ca2+] were also well resolved and reached approximately the same amplitude that resulted from a single shock; the initial decays of delta [Ca2+] from peak slowed substantially during the tetanus. For a single twitch at 16 degrees C, the amplitude of delta [Ca2+] in fast-twitch fibers of mouse is not significantly different from that recently measured in fast- twitch fibers of frog (16.5 +/- 0.9 microM; Zhao, M., S. Hollingworth, and S.M. Baylor. 1996. Biophys. J. 70:896-916); in contrast, the half- width of delta [Ca2+] is surprisingly brief in mouse fibers, only about half that measured in frog (9.6 +/- 0.6 ms). The estimated peak rate at which Ca2+ is released from the sarcoplasmic reticulum in response to an action potential is also similar in mouse and frog, 140-150 microM/ms (16 degrees C). 相似文献
17.
Polyamines are intracellular messengers in the beta-adrenergic regulation of Ca2+ fluxes, [Ca2+]i and membrane transport in rat heart myocytes 总被引:2,自引:0,他引:2
H Koenig A D Goldstone C Y Lu 《Biochemical and biophysical research communications》1988,153(3):1179-1185
The beta-adrenergic agonist 1-isoproterenol (0.1 microM) evokes an acute (less than 5-10 sec) transient increase in the activity of ornithine decarboxylase (ODC), and the levels of polyamines (putrescine, spermidine, spermine) in acutely isolated rat ventricular myocytes. Isoproterenol rapidly (less than 15 sec) increases 45Ca influx and efflux, decreases [Ca2+]i, and stimulates Ca2+-dependent membrane transport (endocytosis, hexose transport, amino acid transport). The beta-adrenergic antagonist propranolol blocks isoproterenol-induced membrane transport. The ODC inhibitor alpha-difluoromethylornithine (DFMO, 5-10 mM) blocks the isoproterenol-evoked increase in ODC activity and polyamine levels and the changes in 45Ca fluxes, [Ca2+]i and membrane transport. Putrescine (0.5-1 mM) replenishes cellular polyamines and reverses the DFMO effect. These data exclude an increase in [Ca2+]i in stimulus-transport coupling, and support the hypothesis that polyamines are messengers in beta-adrenoceptor-mediated regulation of transmembrane Ca2+ fluxes, [Ca2+]i, and Ca2+-dependent membrane transport. 相似文献
18.
In skeletal muscle, the waveform of Ca(2+) release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca(2+) sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca(2+) content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca(2+) release and a way to reliably modify the SR content, we combined in the same cells the "EGTA/phenol red" method (Pape et al., 1995) to evaluate Ca(2+) release, with the "removal" method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Delta[H(+)] and Delta[Ca(2+)] from which the amount of released Ca(2+) and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (Ca(SR)). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as Ca(SR) was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting Ca(SR) (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low Ca(SR). The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca(2+) release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca(2+) on the activity of Ca(2+) release channels. 相似文献
19.
Electrically paced atrial strips of hearts from rat and rainbow trout were exposed to increasing extracellular Ca2+ concentration, [Ca2+]o. This resulted in increases in the peak force in oxygenated atria from both species. During anoxia this response was suppressed for the rat, but accentuated for trout atrium. 相似文献
20.
Gómez AM Schuster I Fauconnier J Prestle J Hasenfuss G Richard S 《American journal of physiology. Heart and circulatory physiology》2004,287(5):H1987-H1993
Ryanodine receptors/Ca2+-release channels (RyR2) from the sarcoplasmic reticulum (SR) provide the Ca2+ required for contraction at each cardiac twitch. RyR2 are regulated by a variety of proteins, including the immunophilin FK506 binding protein (FKBP12.6). FKBP12.6 seems to be important for coupled gating of RyR2 and its deficit and alteration may be involved in heart failure. The role of FKBP12.6 on Ca2+ release has not been analyzed directly, but rather it was inferred from the effects of immunophilins, such us FK506 and rapamycin, which, among other effects, dissociates FKBP12.6 from the RyR2. Here, we investigated directly the effects of FKBP12.6 on local (Ca2+ sparks) and global [intracellular Ca2+ concentration ([Ca2+]i) transients] Ca2+ release in single rat cardiac myocytes. The FKBP12.6 gene was transfected in single myocytes using the adenovirus technique with a reporter gene strategy based on green fluorescent protein (GFP) to check out the success of transfections. Control myocytes were transfected with only GFP (Ad-GFP). Rhod-2 was used as the Ca2+ indicator, and cells were viewed with a confocal microscope. We found that overexpression of FKBP12.6 decreases the occurrence, amplitude, duration, and width of spontaneous Ca2+ sparks. FK506 had diametrically opposed effects. However, overexpression of FKBP12.6 increased the [Ca2+]i transient amplitude and accelerated its decay in field-stimulated cells. The associated cell shortening was increased. SR Ca2+ load, estimated by rapid caffeine application, was increased. In conclusion, FKBP12.6 overexpression decreases spontaneous Ca2+ sparks but increases [Ca2+]i transients, in relation with enhanced SR Ca2+ load, therefore improving excitation-contraction coupling. 相似文献