首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

2.
3.
4.
5.
Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites.  相似文献   

6.
RNA编辑是一个十分重要的生物细胞分子机制。作为转录后修饰的一步,它可以增加蛋白质组学多样性,改变转录产物的稳定性,调节基因表达等。RNA编辑失调会导致各种疾病,包括神经疾病和癌症。在动物中,腺苷到肌苷(A-to-I)的编辑是最普遍的。高通量测序技术的进步大大提高了在全局范围内检测和量化RNA编辑的能力,使得RNA编辑的大规模全基因组分析变得可行,产生了一系列基于高通量测序技术的RNA编辑位点预测方法。通过对这些方法进行介绍、总结和分析,为RNA编辑的进一步研究提供一些思路。  相似文献   

7.
8.
目的:研究人A-to-I RNA编辑事件对外显子剪接增强子(ESE)的潜在影响。方法:搜集文献报道的人A-to-I RNA编辑位点,并筛选包含有A-to-I RNA编辑位点的ESE,分析人A-to-I RNA编辑前后单碱基变化对ESE的潜在影响。结果:3640个A-to-I RNA编辑位点可能使其所在的ESE功能发生潜在改变;A-to-I RNA编辑事件对不同类型ESE的潜在影响不同。结论:A-to-I RNA编辑事件可能潜在影响ESE的功能,对ESE的潜在影响为量的调节,而非质的改变。  相似文献   

9.
10.
11.
  相似文献   

12.
13.
14.
15.
    
《Cell reports》2023,42(2):112112
  1. Download : Download high-res image (194KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
    
  相似文献   

18.
    
  相似文献   

19.
20.
Adenosine-to-inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double-stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号