首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural dynamic of native tendon collagen   总被引:1,自引:0,他引:1  
The dynamic behaviour of collagen fibrils is revealed by time-resolved X-ray investigations of native rat tail tendon fibres in tensile tests.  相似文献   

2.
3.
The structure of gastrocnemius tendons from chickens with genetically induced muscular dystrophy has been studied by low-angle X-ray diffraction. Compared with normal samples there is poor alignment of collagen within the tendons. This difference is quite pronounced at eight weeks when the affected birds are still in comparatively good physical condition. Similar changes have been reported for birds with nutritionally induced muscular dystrophy (Bartlett, M. W., Egelstaff, P. A., Holden, T. M., Stinson, R. H. and Sweeny, P. R. (1973) Biochim. Biophys. Acta 328, 213-220).  相似文献   

4.
Calcified leg flexor tendons in which the inorganic phase content had been lowered by progressive demineralization were studied by small angle X-ray diffraction and thermogravimetry. The X-ray diffraction results agree very well with the data previously obtained on calcified turkey tendon indicating that the method used to decalcify tendons provides good correspondence with the process of calcification. Up to five thermal processes can be detected in the thermogravimetric scans: (1) water release; (2) collagen decomposition; (3 and 4) combustion of the residual organic components; (5) carbonate removal from the apatitic phase. The temperature of collagen decomposition decreases at lower inorganic phase content in agreement with the higher thermal stability of calcified collagen fibrils compared with uncalcified ones. The decrease of collagen thermal stability upon decalification is paralleled by a decrease of the structural order of the collagen fibrils as indicated by small angle X-ray diffraction data. Decalcification down to about 40% wt of inorganic phase does not significantly alter the inorganic blocks that are regularly arranged inside the gap zone of the collagen. Further removal of inorganic phase down to about 15% wt provokes a variation of the intensity distribution of the small angle meridional reflections that can be ascribed to a reduction of the mean height of the inorganic blocks. At inorganic phase contents below 15% wt the gap region is more free to contract upon air drying as a result of the reduction of the mean length of the inorganic blocks.  相似文献   

5.
6.
7.
Tendons are composed of fibroblasts and collagen fibrils. The fibrils are organized uniaxially and grouped together into fibers. Collagen VI is a non-fibrillar collagen expressed in developing and adult tendons. Human collagen VI mutations result in muscular dystrophy, joint hyperlaxity and contractures. The purpose of this study is to determine the functional roles of collagen VI in tendon matrix assembly. During tendon development, collagen VI was expressed throughout the extracellular matrix, but enriched around fibroblasts and their processes. To analyze the functional roles of collagen VI a mouse model with a targeted inactivation of Col6a1 gene was utilized. Ultrastructural analysis of Col6a1−/− versus wild type tendons demonstrated disorganized extracellular micro-domains and associated collagen fibers in the Col6a1−/− tendon. In Col6a1−/− tendons, fibril structure and diameter distribution were abnormal compared to wild type controls. The diameter distributions were shifted significantly toward the smaller diameters in Col6a1−/− tendons compared to controls. An analysis of fibril density (number/μm2) demonstrated a ~ 2.5 fold increase in the Col6a1−/− versus wild type tendons. In addition, the fibril arrangement and structure were aberrant in the peri-cellular regions of Col6a1−/− tendons with frequent very large fibrils and twisted fibrils observed restricted to this region. The biomechanical properties were analyzed in mature tendons. A significant decrease in cross-sectional area was observed. The percent relaxation, maximum load, maximum stress, stiffness and modulus were analyzed and Col6a1−/− tendons demonstrated a significant reduction in maximum load and stiffness compared to wild type tendons. An increase in matrix metalloproteinase activity was suggested in the absence of collagen VI. This suggests alterations in tenocyte expression due to disruption of cell-matrix interactions. The changes in expression may result in alterations in the peri-cellular environment. In addition, the absence of collagen VI may alter the sequestering of regulatory molecules such as leucine rich proteoglycans. These changes would result in dysfunctional regulation of tendon fibrillogenesis indirectly mediated by collagen VI.  相似文献   

8.
9.
Stress-induced molecular rearrangement in tendon collagen   总被引:5,自引:0,他引:5  
Tension-induced molecular rearrangements in wet native fibres of rat-tail tendons and human finger flexor tendons are registered with the help of time-resolved diffraction spectra using synchrotron radiation. The tension-induced increase of the 67 nm D period is combined with changes in the intensities of some orders of the meridional small angle reflection. Both effects are reversible when unloading the fibre, but are preserved when the load is held constant until the fibre tears. The increase in the D period is partly due to a sliding of the triple helices relative to each other and partly due to a stretching of the triple helices themselves. The sliding of the triple helices results in an alteration of the D stagger, leading to a change in the length of the gap and overlap regions, and to a stretching of the cross-linked telopeptides. This interpretation is supported by comparison with the relative intensities derived from a model with varying length of gap and overlap regions, as well as by comparison with model calculations that include the telopeptides.  相似文献   

10.
11.
Collagen is the main component of structural mammalian tissues. In tendons, collagen is arranged into fibrils with diameters ranging from 30 nm to 500 nm. These fibrils are further assembled into fibres several micrometers in diameter. Upon excessive thermal or mechanical stress, damage may occur in tendons at all levels of the structural hierarchy. At the fibril level, reported damage includes swelling and the appearance of discrete sites of plastic deformation that are best observed at the nanometer‐scale using, for example, scanning electron microscopy. In this paper, digital in‐line holographic microscopy is used for quantitative phase imaging to measure both the refractive index and diameter of collagen fibres in a water suspension in the native state, after thermal treatments, and after mechanical overload. Fibres extracted from tendons and subsequently exposed to 70 °C for 5, 15, or 30 minutes show a significant decrease in refractive index and an increase in diameter. A significant increase in refractive index is also observed for fibres extracted from tendons that were subjected to five tensile overload cycles.

  相似文献   


12.
High-molecular-mass aggregates were made soluble from insoluble collagens of bovine Achilles tendon and rat tail tendon by limited thermal hydrolysis. These polymeric collagen aggregates were cross-linked by 390-nm-fluorescent 3-hydroxy-pyridinium residues (excited at 325 nm) in the former tendon and by unknown non-fluorescent residues in the latter. With the solubilized insoluble-collagens from both tendons, as well as with acid-soluble collagen from rat tail tendon, other 350-385-nm fluorescence intensities (excited at 300 nm) were found to be higher in monomeric chains than in dimeric and polymeric chains. Low levels of ozone inhibited fibril formation of acid-soluble collagen particularly from young rat tail tendon, reacting with tyrosine residues and the 350-385-nm fluorophores. Aldehyde groups, involved in cross-linking, were not effectively modified by ozone. beta-Components (alpha-chain dimers) were not efficiently dissociated even by higher doses of ozone compared to gamma-components (alpha-chain trimers). Polymeric chain aggregates from bovine Achilles tendon collagen, whose 3-hydroxy-pyridinium cross-links are cleaved by ozone, were more readily dissociated by ozone than those from rat tail tendon collagen. Ultraviolet (300-nm) light, which destroyed the 350-385-nm fluorophores, inhibited fibril formation less effectively than ultraviolet (275-nm) light, which is absorbed by tyrosine residues, and did not dissociate collagen polymers from rat tail tendon. On the other hand, ultraviolet (320-nm) light, absorbed by 3-hydroxy-pyridinium cross-links which were rapidly photolyzed, partially dissociated polymeric collagen aggregates from bovine Achilles tendon after subsequent heating.  相似文献   

13.
Electron microscopic observations are presented on thin sections of excised chicken breast tendon following the introduction and diffusion of aqueous solutions of heavy metal salts. The dark banded regions of the collagen fibrils are seen to be in near-perfect register throughout the diameter of each fibril and, in many cases, to be continuous across the intervening ground substance. Clusters of uranyl ions form well-defined chains extending across the interfibrillar space between neighbouring fibrils, a distance of several hundred nanometres. It is suggested that the high degree of organization characteristic of collagen fibrils in tissue may perhaps be a property not only of the protein but also of the ground substance in which it is embedded, the fibres merely rendering visible a lattice pattern of their surroundings to which they have conformed.  相似文献   

14.
The pattern of collagen cross-linking is tissue specific primarily determined by the extent of hydroxylation and oxidation of specific lysine residues in the molecule. In this study, murine pre-myoblast cell line, C2C12 cells, were transdifferentiated into osteoblastic cells by bone morphogenetic protein (BMP)-2 treatment, and the gene expression of lysyl hydroxylases (LH1, 2a/b, and 3) and lysyl oxidase (LOX)/lysyl oxidase-like proteins (LOXL1-4), and the extent of hydroxylysine were analyzed. After 24 h of treatment, the expression of most isoforms were upregulated up to 96 h whereas LH2a and LOXL2 decreased with time. In the treated cells, both hydroxyproline and hydroxylysine were detected at day 7 and increased at day 14. The ratio of hydroxylysine to hydroxyproline was significantly increased at day 14. The results indicate that LHs and LOX/LOXLs are differentially responsive to BMP-induced osteoblast differentiation that may eventually lead to the specific collagen cross-linking pattern seen in bone.  相似文献   

15.
Normal tendon comprises coaxially aligned bundles of crimped collagen fibres each of which possesses a fibrillar substructure. In acute traumatic injury this level of organization is disrupted and the mechanical function of the tendon impaired. During repair, a degree of recovery of the fibrillar structure takes place. In this tudy we have assessed the re-establishment of tendon organization after injury on the basis of the collagen fibril diameter distribution and the collagen crimp parameters. Crimp became undetectable following injury but one month later was present throughout the tissue. At this time the periodicity was greatly reduced by comparison with that of the normal tendon and normal values were not re-established within 14 months following injury. Collagen fibril diameters remained abnormally small over this same period of time. In particular, fibrils of diameters in excess of 100 nm, commonly found in normal and contralateral tendons, were totally absent from the observed distributions in the healing tendons. Such large diameter fibrils often account for as much as 50% of the total mass of collagen present in the uninjured tissue. Thus the mechanical properties of the healing tendon may remain significantly different from those of normal tendon for a minimum time of 14 months after injury.  相似文献   

16.
Physical and chemical modifications of collagen gels: impact on diffusion   总被引:2,自引:0,他引:2  
The extracellular matrix (ECM) represents a major barrier for delivery of therapeutic drugs, and the transport is determined by the ECM composition, structure, and distribution. Because of the high interstitial fluid pressure in tumors, diffusion becomes the main transport mechanism through ECM. The purpose of this work was to study the impact of the structure of the collagen network on diffusion, by studying to what extent the orientation and chemical modification of the collagen network influenced diffusion. Collagen gels with a concentration of 0.2-2.0% that is comparable with the amount of collagen in the tumor ECM were used as a model system for ECM. Collagen gels were aligned in a low-strength magnetic field and geometrical confinement, and chemically modified by adding decorin or hyaluronan. Diffusion of dextran 2-MDa molecules in the collagen gels was measured using fluorescence recovery after photobleaching. Alignment of the collagen fibers in our gels was found to have no impact on the diffusion coefficient. Adding decorin reduced the diameter of the collagen fibers, but no effect on diffusion was observed. Hyaluronan also reduced the fiber diameter, and high concentration of hyaluronan (2.5 mg/ml) increased the diffusion coefficient. The results indicate that the structure of the collagen network is not a major factor in determining the diffusion through the ECM. Rather, increasing the concentration of collagen was found to reduce the diffusion coefficient. Concentration of the collagen network is more important than the structure in determining the diffusion coefficient.  相似文献   

17.
Chen MY  Jeng L  Sun YL  Zhao CF  Zobitz ME  Moran SL  Amadio PC  An KN 《Biorheology》2006,43(3-4):337-345
Knowledge of the adaptation of the soft tissue to mechanical factors and biomolecules would be essential to better understand the mechanism of tendon injury and to improve the outcome of tendon repair. The responses to these factors could be different for the distinct types of cells in the tendon: cells from the tendon sheath, fibroblasts from the epitenon surface, or fibroblasts from the internal endotenon. In this study, we examined the mechanical and histological characteristics of the rate of contraction of the collagen gel seeded with epitenon and endotenon fibroblasts. The rate of contraction and the mechanical property of the contracted construct depend on the gel concentration and also the treatment of TGF-beta1.  相似文献   

18.
Nucleoside chemistry represents an important research area for drug discovery, as many nucleoside analogs are prominent drugs and have been widely applied for cancer and viral chemotherapy. However, the synthesis of modified nucleosides presents a major challenge, which is further aggravated by poor solubility of these compounds in common organic solvents. Most of the currently available methods for nucleoside modification employ toxic high boiling solvents; require long reaction time and tedious workup methods. As such, there is constant effort to develop process chemistry in alternative medium to limit the use of organic solvents that are hazardous to the environment and can be deleterious to human health. One such approach is to use ionic liquids, which are ‘designer materials’ with unique and tunable physico-chemical properties. Studies have shown that methodologies using ionic liquids are highly efficient and convenient for the synthesis of nucleoside analogs, as demonstrated by the preparation of pharmaceutically important anti-viral drugs. This article summarizes recent efforts on nucleoside modification using ionic liquids.  相似文献   

19.
X-ray diffraction patterns have been recorded from native rat-tail tendon and from rat-tail tendon treated with phosphotungstic acid. The reciprocal space coordinates of a number of Bragg reflections were determined and used to determine both the unit cell of the lattice and its orientation with respect to the fibre axis. The unit cell was found to be triclinic and to contain only one molecule. The results obtained are discussed in terms of the microfibril and of the quasi-hexagonal models for molecular packing. The unit cell dimensions are consistent with the latter model and values are derived for the molecular tilt and azimuth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号