首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whereas Saccharomyces cerevisiae uses the Embden‐Meyerhof‐Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner‐Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ~100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost‐effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass.  相似文献   

2.
The aim of this work was to modify the cell surface properties of Saccharomyces cerevisiae by expression of the HFBI hydrophobin of the filamentous fungus Trichoderma reesei on the yeast cell surface. The second aim was to study the immobilization capacity of the modified cells. Fusion to the Flo1p flocculin was used to target the HFBI moiety to the cell wall. Determination of cell surface characteristics with contact angle and zeta potential measurements indicated that HFBI-producing cells are more apolar and slightly less negatively charged than the parent cells. Adsorption of the yeast cells to different commercial supports was studied. A twofold increase in the binding affinity of the hydrophobin-producing yeast to hydrophobic silicone-based materials was observed, while no improvement in the interaction with hydrophilic carriers could be seen compared to that of the parent cells. Hydrophobic interactions between the yeast cells and the support are suggested to play a major role in attachment. Also, a slight increase in the initial adsorption rate of the hydrophobin yeast was observed. Furthermore, due to the engineered cell surface, hydrophobin-producing yeast cells were efficiently separated in an aqueous two-phase system by using a nonionic polyoxyethylene detergent, C12-18EO5.  相似文献   

3.
Simultaneous saccharification and co‐fermentation (SSCF) of waste paper sludge to ethanol was investigated using two recombinant xylose‐fermenting microbes: Zymomonas mobilis 8b and Saccharomyces cerevisiae RWB222. S. cerevisiae RWB222 produced over 40 g/L ethanol with a yield of 0.39 g ethanol/g carbohydrate on paper sludge at 37°C, while similar titers and yields were achieved by Z. mobilis 8b at 30°C. Both S. cerevisiae RWB222 and Z. mobilis 8b exhibited decreasing cell viability at 37°C when producing over 40 g/L ethanol. A high ethanol concentration can account for S. cerevisiae RWB222 viability loss, but ethanol concentration was not the only factor influencing Z. mobilis 8b viability loss at 37°C. Over 3 g/L residual glucose was observed at the end of paper sludge SSCF by Z. mobilis 8b, and a statistical analysis revealed that a high calcium concentration originating from paper sludge, a high ethanol concentration, and a high temperature were the key interactive factors resulting in glucose accumulation. The highest ethanol yields were achieved by SSCF of paper sludge with S. cerevisiae RWB222 at 37°C and Z. mobilis 8b at 30°C. With good sugar consumption at 37°C, S. cerevisiae RWB222 was able to gain an improvement in the polysaccharide to sugar yield compared to that at 30°C, whereas Z. mobilis 8b at 30°C had a lower polysaccharide to sugar yield, but a higher sugar to ethanol yield than S. cerevisiae. Both organisms under optimal conditions achieved a 19% higher overall conversion of paper sludge to ethanol than the non‐xylose utilizing S. cerevisiae D5A at its optimal process temperature of 37°C. Biotechnol. Bioeng. 2010;107: 235–244. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
《Biomass》1990,21(4):285-295
Seventy-two strains of bacteria representing 39 genera and one yeast (Candida albicans) were screened for ability to hydrolyze chitin. Chitin hydrolysis was determined by a clear zone surrounding colonies growing on the surface of chitin agar. Species with the largest clear zone to colony size (CZ/CS) ratio were further compared for chitinolysis by assaying the level of reducing sugar produced in broth culture. Three yeasts and one bacterial strain known to produce ethanol from glucose were compared for their abilities to produce ethanol from amino sugars. Of the 72 strains screened, 23 produced CZ/CS ratios ranging from 0·38 to 2·5. The highest ratios were observed for strains in the genera: Bacillus and Serratia, followed by Micrococcus, Aeromonas, Vibrio, Clostridium and Plesiomonas. The other species examined produced ratios of less than 1 or were unable to hydrolyze chitin.Hansenula anomala, Pachysolen tannophilus, Saccharomyces cerevisiae, and Zymomonas mobilis were compared for their abilities to grow on and produce ethanol from glucose, glucosamine, and N-acetylglucosamine (NAG). Saccharomyces cerevisiae and H. anomala produced ethanol only from glucose. Pachysolen tannophilus and Z. mobilis produced ethanol from glucose, glucosamine and NAG. The highest concentration of ethanol produced from amino sugar was 598 μg ml−1 from 10 mg ml−1 glucosamine by Z. mobilis. This level was achieved only when yeast extract was included in the medium. Saccharomyces cerevisiae did not grow on glucosamine and Z. mobilis did not grow well on NAG.  相似文献   

5.
In the present work, the use of flame-burned WS as carriers of Z. mobilis and extracellular levansucrase and the effect of the cell fixation method by dehydration on system productivity were investigated. Lyophilization and convective drying of Z. mobilis biomass at 30°C to a moisture content of 10–14% gave the best results for the repeated batch fermentations of a sucrose medium to obtain levan and ethanol. Significant correlation between the product formation and the concentration of free cells in the fermentation medium was established. Clearly, the cells were weakly bound to the newly generated WS and were washed out into the medium during fermentation. Here the hypothesis is presented that components excreted from damaged cells during dehydration can intensify the reactivation of damaged living cells and influence the interactions between the cells and the wire surface. The passive immobilization of extracellular levansucrase in oxidized WS was also observed. The superiority of oxidized WS in comparison with non-treated WS is related to an increase in the number of OH groups. The potential regeneration of WS by burning after the termination of fermentation cycles was also considered.  相似文献   

6.
Summary Whole cells of Saccharomyces bayanus, Saccharomyces cerevisiae and Zymomonas mobilis were immobilized by chelation/metal-link processes onto porous inorganic carriers. The immobilized yeast cells displayed much higher sucrose hydrolyzing activities (90–517 U/g) than the bacterial, Z. mobilis, cells (0.76–1.65 U/g). The yeast cells chelated on hydrous metal oxide derivative of pumice stone presented higher initial -d-fructofuranosidase (invertase, EC 3.2.1.26) activity (161–517 U/g) than on other derivatives (90–201 U/g). The introduction of an organic bridge between the cells and the metal activator led to a decrease of the initial activity of the immobilized cells, however S. cerevisiae cells immobilized on the carbonyl derivative of titanium (IV) activated pumice stone, by covalent linkage, displayed a very stable behaviour, which in continuous operation at 30° C show only a slightly decrease on invertase activity for a two month period (half-life=470 days). The continuous hydrolysis of a 2% w/v sucrose solution at 30° C in an immobilized S. cerevisiae packed bed reactor was described by a simple kinetic model developed by the authors (Cabral et al., 1984a), which can also be used to predict the enzyme activity of the immobilized cells from conversion degree data.  相似文献   

7.
The zeta potential of Saccharomyces cerevisiae cells has been studied. Zeta potential was measured by microelectrophoresis with a Laser Zee meter model 500. Haploid (a and α) and diploid cells were tested and their zeta potential was found to be comparable. The influence of agents such as CaCl2, NaCl, carboxymethylcellulose, Al2(SO4)3 and cationic starch, on the zeta potential of cells has been studied. Moreover, zeta potential measurement has been used for improvement of cell immobilization by adhesion on sawdust.  相似文献   

8.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

9.
The attachment, growth and product synthesis of non-flocculating Zymomonas mobilis cell, fixed in stainless steel wire spheres (WS), were investigated. The carrier surface was activated by treatment with titanium (IV) chloride (TiCl4) and γ-aminopropyltriethoxysilane (AS) in an attempt to raise the efficiency in the immobilization of the cells. System productivity for ethanol and levan production, using cells immobilized on a modified stainless steel in the batch fermentation of a sucrose medium, rose as a result of increased biomass compared to the productivity of cells fixed on untreated (control) metal surfaces. Stabilized ethanol synthesis was demonstrated in the course of four cycles (each cycle 48 h) of repeated fermentations with a stainless steel carrier treated with AS, and three cycles when TiCl4 was used. Levan synthesis decreased after three cycles with cells immobilized on a silanized surface. System productivity for ethanol and levan production after the fourth cycle in experiments with TiCl4-activated, silanized and unmodified carriers were Qeth = 1.01, 1.06 and 0.27 g/l × h; Qlev = 0.32, 0.29 and 0.12 g/l × h, respectively. However, the specific productivity of biomass for product synthesis was higher in fermentation systems with untreated stainless steel surfaces, probably due to some loss of physiological activity of cells attached to a modified carrier. Investigations of throughly washed activated stainless steel wire surfaces, by scanning electron microscopy after immobilization, showed significant attachment of cells to the carriers. A polymer layer covered the wire surface treated with TiCl4 after fermentations. This may be explained as the binding of extracellular polysaccharide, such as the fructose-polymer levan and yeast extract components, to the modified support via chelation. After four fermentations, craters and holes in the polymer layer were evident, probably as a result of CO2 formation. A small number of cells appeared on this layer. In view of the good ethanol formation during all fermentation cycles, it is probably that active Z. mobilis cells remained under the polymer layer. Wire treatment with AS resulted in the formation of long filamentous cells during fermentation and some disturbance of cellular fission. This may be partly explained by strong electrostatic interactions between the positively charged carrier surface and the predominately negatively charged surface of Z mobilis cells. However, this did not significantly affect other cellular functions. The surface of the wire treated with AG was practically without a polymer layer.  相似文献   

10.
Summary Zymomonas mobilis strains were compared with each other and with a Saacharomyces cerevisiae strain for the production of ethanol from sugar cane molasses in batch fermentations. The effect of pH and temperature on ethanol production by Zymomonas was studied. The ability of Z. mobilis to produce ethanol from molasses varied from one strain to another. At low sugar concentrations Zymomonas compared favourably with S. cerevisiae. However, at higher sugar concentrations the yeast produced considerably more ethanol than Zymomonas.  相似文献   

11.
In this work, an immobilization method for polymer-levan production by a non-flocculating Z mobilis culture was developed. The extent of cell attachment to the stainless steel wire surface, culture growth and product synthesis were described. It was established that during short-term passive immobilization of non-flocculation Z mobilis cells on a stainless steel wire surface, sufficient amounts of biomass for proper levan and ethano fermentation could not be obtained. Adherence of cells was improved by pressing the paste-like biomass within stainless steel spheres knitted from wire with subsequent dehydration. Biomass fixed in metal spheres was used for repeated batch fermentation of levan. The activation period of cells within wire spheres (WS) was 48 h in duration. During this time, cell growth stabilized at production levels of ethanol and levan of Qeth = 1.238 g/l × h and qeth = 0.47 g/l × h; Qeth = 0.526 g/l × h and qeth = 0.20 g/l × h. Five stable fermentation cycles were realized using one wire sphere inoculum, and maintaining a stable ratio of 2.4 of biomass suspended in the medium to biomass fixed in the sphere. Using fixed Z mobilis biomass in the WS, the total amount of inoculum could be reduced for batch fermentation. Large plaited wire spheres with biomass may have potential in fermentation in viscous systems, including levan production.  相似文献   

12.
Transformation of Zymomonas mobilis with plasmid pKT230 by electroporation was achieved with a transformation efficiency of 9.0?±?1.8?×?103 per μg plasmid DNA. The growing state of the host cells before transformation, the RC time constant for pulsing at the optimal electric field strength (7.5?kV/cm), the plasmid concentration and the post-incubation time prior to outgrowth in RM medium were the sensitive factors influencing the efficiency of the transformation. The data from batch cultures revealed that the plasmid-harboring cells, Z. mobilis (pKT230), had the same growth pattern as plasmid-free cells. The yield factors of biomass production and ethanol formation by Z. mobilis were nearly unchanged after being transformed and grown in the selective medium where the gene for antibiotic resistance was expressed. The results suggested that the plasmid pKT230 was stable in Z. mobilis and qualified for being a cloning vector in the construction of a recombinant ethanol-producer.  相似文献   

13.
Bioethanol production from carob pods has attracted many researchers due to its high sugar content. Both Zymomonas mobilis and Saccharomyces cerevisiae have been used previously for this purpose in submerged and solid-state fermentation. Since extraction of sugars from the carob pod particles is a costly process, solid-state and solid submerged fermentations, which do not require the sugar extraction step, may be economical processes for bioethanol production. The aim of this study is to evaluate the bioethanol production in solid submerged fermentation from carob pods. The maximum ethanol production of 0.42 g g?1 initial sugar was obtained for Z. mobilis at 30°C, initial pH 5.3, and inoculum size of 5% v/v, 9 g carob powder per 50 mL of culture media, agitation rate 0 rpm, and fermentation time of 40 hr. The maximum ethanol production for S. cerevisiae was 0.40 g g?1 initial sugar under the same condition. The results obtained in this research are comparable to those of Z. mobilis and S. cerevisiae performance in other culture mediums from various agricultural sources. Accordingly, solid submerged fermentation has a potential to be an economical process for bioethanol production from carob pods.  相似文献   

14.
The close relation between metabolic activity and heat release means that calorimetry can be successfully applied for on-line monitoring of biological processes. Since the use of available calorimeters in biotechnology is difficult because of technical limitations, a new sensitive heat-flux calorimeter working as a laboratory fermenter was developed and tested for different aerobic and anaerobic fermentations with Saccharomyces cerevisiae and Zymommonas mobilis. The aim of the experiments was to demonstrate the abilities of the method for biotechnological purposes. Fermentations as well as the corresponding heat, substrate and product analyses were reproducible. During experiments the heat signal was used as a sensitive and fast indicator for the response of the organisms to changing conditions. One topic was the monitoring of diauxic growth phenomena during batch fermentations, which may affect process productivity. S. cerevisiae was used as the test organism and a protease-excreting Bacillus licheniformis strain as an industrial production system. Other experiments focused on heat measurements in continuous culture under substrate-limiting conditions in order to analyse bacterial nutrient requirements. Again, Z. mobilis was used as the test organism. Ammonium, phosphate, magnesium, biotin and panthothenate, as important substrate compounds, were varied. The results indicate that these nutrients are required in lower amounts for growth than formerly suggested. Thus, a combination of heat measurements and other methods may rapidly improve our knowledge of nutrient requirements even for a well-known microorganism like Z. mobilis. *** DIRECT SUPPORT *** AG903062 00004  相似文献   

15.
Expression of a Lactose Transposon (Tn951) in Zymomonas mobilis   总被引:7,自引:5,他引:2       下载免费PDF全文
The potential utility of Zymomonas mobilis as an organism for the commercial production of ethanol would be greatly enhanced by the addition of foreign genes which expand its range of fermentable substrates. We tested various plasmids and mobilizing factors for their ability to act as vectors and introduce foreign genes into Z. mobilis CP4. Plasmid pGC91.14, a derivative of RP1, was found to be transferred from Escherichia coli to Z. mobilis at a higher frequency than previously reported for any other plasmids. Both tetracycline resistance and the lactose operon from this plasmid were expressed in Z. mobilis CP4. Plasmid pGC91.14 was stably maintained in Z. mobilis at 30°C but rapidly lost at 37°C.  相似文献   

16.
R-Plasmid Transfer in Zymomonas mobilis   总被引:10,自引:8,他引:2       下载免费PDF全文
Conjugal transfer of three IncP1 plasmids and one IncFII plasmid into strains of the ethanol-producing bacterium Zymomonas mobilis was obtained. These plasmids were transferred at high frequencies from Escherichia coli and Pseudomonas aeruginosa into Z. mobilis and also between different Z. mobilis strains, using the membrane filter mating technique. Most of the plasmids were stably maintained in Z. mobilis, although there was some evidence of delayed marker expression. A low level of chromosomal gene transfer, mediated by plasmid R68.45, was detected between Z. mobilis strains. Genetic evidence suggesting that Z. mobilis may be more closely related to E. coli than to Pseudomonas or Rhizobium is discussed.  相似文献   

17.
Saccharomyces cerevisiae andZymomonas mobilis were grown on pineapple waste and their alcohol production characteristics compared. The pineapple waste consisted of 19% cellulose, 22% hemi-cellulose, 5% lignin and 53% cell soluble matters but concentration of soluble sugars, which included 5.2% sucrose, 3.1% glucose and 3.4% fructose, was relatively low and pretreatment of the substrate was needed. Pretreatment of pineapple waste with cellulase and hemi-cellulase and then fermantation withS. cerevisiae orZ. mobilis produced about 8% ethanol from pineapple waste in 48 h.
Résumé On a fait croîtreSaccharomyces cerevisiae etZymomonas mobilis sur des déchets d'ananas, et on a comparé les caractéristiques de leur production d'alcool. Le déchet d'ananas consistait en 19% de cellulose, 22% d'hémicellulose, 5% de lignine et 53% de matières cellulaires solubles. Mais la concentration en sucres solubles qui comprenait 5.2% de sucrose, 3.1% de glucose et 3.4% de fructose, était relativement faible. Le prétraitement du substral s'avérait donc nécessaire. Le pr étraitement ces déchets d'ananas avec la cellulase et l'hemicellulase, suivi de la fermentation parS. cerevisiae ouZ. mobilis ont produit environ 8% d'ethanol à partir de résidus d'ananas en 48 h.
  相似文献   

18.
Continuous ethanol fermentations were performed in duplicate for 60 days withZymomonas mobilis ATCC 331821 orSaccharomyces cerevisiae ATCC 24859 in packed-bed reactors with polypropylene or plastic composite-supports. The plastic composite-supports used contained polypropylene (75%) with ground soybean-hulls (20%) and zein (5%) forZ. mobilis, or with ground soybean-hulls (20%) and soybean flour (5%) forS. cerevisiae. Maximum ethanol productivities of 536 gL–1 h–1 (39% yield) and 499 gL–1 h–1 (37% yield) were obtained withZ. mobilis on polypropylene and plastic composite-supports of soybean hull-zein, respectively. ForZ. mobilis, and optimal yield of 50% was observed at a 1.92h–1 dilution rate for soybean hull-zein plastic composite-supports with a productivity of 96gL–1h–1, whereas with polypropylene-supports the yield was 32% and the productivity was 60gL–1h–1. With aS. cerevisiae fermentation, the ethanol production was less, with a maximum productivity of 76gL–1h–1 on the plastic composite-support at a 2.88h–1 dilution rate with a 45% yield. Polypropylene-support bioreactors were discontinued due to reactor plugging by the cell mass accumulation. Support shape (3-mm chips) was responsible for bioreactor plugging due to extensive biofilm development on the plastic composite-supports. With suspensionculture continuous fermentations in continuously-stirred benchtop fermentors, maximum productivities of 5gL–1h–1 were obtained with a yield of 24 and 26% withS. cerevisiae andZ. mobilis, respectively. Cell washout in suspensionculture continuous fermentations was observed at a 1.0h–1 dilution rate. Therefore, for continuous ethanol fermentations, biofilm reactors out-performed suspension-culture reactors, with 15 to 100-fold higher productivities (gL–1h–1) and with higher percentage yields forS. cerevisiae andZ. mobilis, respectively. Further research is needed with these novel supports to evaluate different support shapes and medium compositions that will permit medium flow, stimulate biofilm formation, reduce fermentation costs, and produce maximum yields and productivities.This is Journal Paper No. J-16357 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

19.
《Process Biochemistry》2007,42(4):745-750
Changes in the cell surface hydrophobicity (CSH) of bacteria Zymomonas mobilis 113S were examined in response to varied environmental conditions (temperature and phase of growth, concentration or type of carbon source, the presence of amphiphilic compounds). The values of CSH were elevated with a decreased growth rate over the time of cultivation up to 20–22% at the stationary phase. CSH values increased proportionally with the growth of cultivation temperature and concentration of carbon source (glucose or sucrose) or amphiphilic compound (aliphatic alcohols, Tween80) in the medium. Replacement of sucrose by glucose and the presence of Tween20 in the growth medium resulted in reduced values of CSH. An inverse relationship was detected between the number of attached cells to the hydrophilic glass surfaces and the CSH values of Z. mobilis whereas direct linear relationship was observed for hydrophobic surfaces. Permeation rates of the fluorescent probe (NPN) into the cells were directly proportional to the concentration of extracellular protein in the medium and to the values of CSH indicating the impaired barrier function for more hydrophobic cells. The multiple correlation between the CSH values and absorption indices of FT-IR spectra at the fingerprint region (866–1088 cm−1) suggests the possible contribution of carbohydrates and/or lipopolysaccharides in observed changes of Z. mobilis hydrophobicity.  相似文献   

20.

Background

Inorganic mesoporous materials exhibit good biocompatibility and hydrothermal stability for cell immobilization. However, it is difficult to encapsulate living cells under mild conditions, and new strategies for cell immobilization are needed. We designed a “fish-in-net” approach for encapsulation of enzymes in ordered mesoporous silica under mild conditions. The main objective of this study is to demonstrate the potential of this approach in immobilization of living cells.

Methodology/Principal Findings

Zymomonas mobilis cells were encapsulated in mesoporous silica-based materials under mild conditions by using a “fish-in-net” approach. During the encapsulation process, polyethyleneglycol was used as an additive to improve the immobilization efficiency. After encapsulation, the pore size, morphology and other features were characterized by various methods, including scanning electron microscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy, fourier transform infrared spectroscopy, and elemental analysis. Furthermore, the capacity of ethanol production by immobilized Zymomonas mobilis and free Zymomonas mobilis was compared.

Conclusions/Significance

In this study, Zymomonas mobilis cells were successfully encapsulated in mesoporous silica-based materials under mild conditions by the “fish-in-net” approach. Encapsulated cells could perform normal metabolism and exhibited excellent reusability. The results presented here illustrate the enormous potential of the “fish-in-net” approach for immobilization of living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号