首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four new lactone chlorins, ficuschlorins A – D ( 1 – 4 , resp.), and six known pheophytins were isolated from the leaves of Ficus microcarpa. The structures of these compounds were determined by 1D‐ and 2D‐NMR spectroscopy, and other techniques. New natural pheophytins were rarely obtained. In the past ten years, only three new pheophytins were isolated from natural sources.  相似文献   

2.
The survey of naturally occurring of auxin polar transport regulators in Asteraceae was investigated using the radish (Raphanus sativus L.) hypocotyl bioassay established in this study. Significant auxin polar transport was observed when radiolabeled indole-3-acetic acid (IAA) was applied at the apical side of radish hypocotyl segments, but not when it was applied at the basal side of the segments. Almost no auxin polar transport was observed in radish hypocotyl segments treated with synthetic auxin polar transport inhibitors of N-(1-naphthyl)phthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) at 0.5 μg/plant. 2,3,5-Triiodobenzoic acid (TIBA) at 0.5 μg/plant was less effective than NPA and HFCA, and p-chlorophenoxyisobutyric acid (PCIB) at 0.5 μg/plant had almost no effect on auxin polar transport in the radish hypocotyl bioassay. These results strongly suggest that the radish hypocotyl bioassay is suitable for the detection of bioassay-derived auxin polar transport regulators. Using the radish hypocotyl bioassay and physicochemical analyses, dehydrocostus lactone (decahydro-3,6,9-tris-methylene-azulenol(4,5-b)furan-2(3H)-one) and 4-hydroxy-β-thujone (4-hydroxy-4-methyl-1-(1-methylethyl)-bicyclo[3.1.0]hexan-3-one) were successfully identified as auxin polar transport inhibitors from Saussurea costus and Arctium lappa, and Artemisia absinthium, respectively. About 50 and 40 % inhibitions of auxin polar transport in radish hypocotyl segments were observed at 2.5 μg/plant pre-treatment (see “Materials and methods”) of dehydrocostus lactone and 4-hydroxy-β-thujone, respectively. Although the mode of action of these compounds in inhibiting auxin polar transport has not been clear yet, their possible mechanisms are discussed.  相似文献   

3.
Natural products have been a great source of pharmaceuticals since ages. Vast screening of natural products from different sources has led to the discovery of plethora of chemotherapeutic drugs and other compounds for the betterment of human life. Several bioactive entities have been generated by the structural modifications of the natural products or by using the natives as key models in synthetic chemistry. Nonetheless, a number of natural compounds with potential bioactivities remain unexploited in the medicinal field due to their stringent chemical properties. Andrographis paniculata Nees., a traditional medicinal herb from family Acanthaceae is known for its multiple pharmacological activities. It’s major bioactive constituent “andrographolide”, possesses promising anticancer potential and is one such unexploited treasure. The architecture of the molecule consists of an α-alkylidene γ-butyrolactone moiety, two olefin bond [Δ8(17) and Δ12(13)], three hydroxyls at C-3, C-19, and C-14 and highly substituted trans decalin. Of the three hydroxyl groups, one is allylic at C-14, and the others are secondary and primary at C-3 and C-19, respectively. By modification of the above structural features a number of andrographolide derivatives have been synthesized. The intricacy of the molecule has always been a constraint in developing a commercialized drug, nevertheless the efforts in this direction via synthetic chemistry are still continuous and prominent. The present review highlights the chemistry and anticancer activity of andrographolide. It discusses the limitations of the molecule as a pharmacological agent. Modifications in the key molecule along different moieties has been discussed which might lead to desirable bioactive molecules. The compiled information will be helpful in further developing specific modifications in andrographolide moiety which will have significant contribution in semi synthesis of anti-cancer agents.  相似文献   

4.
5.
《Phytochemistry》1987,26(2):491-492
A new diterpene glucoside, phloganthoside, has been isolated from Phlogacanthus thyrsiflorus and its structure has been established as phlogantholide-A-19-O-β-d-glucopyranoside.  相似文献   

6.
Phosphotriesterase-like lactonases (PLLs) have received much attention because of their physical and chemical properties. They may have widespread applications in various fields. For example, they show potential for quorum-sensing signaling pathways and organophosphorus (OP) detoxification in agricultural science. However, the mechanism by which PLLs hydrolyze, which involves OP compounds and lactones and a variety of distinct catalytic efficiencies, has only rarely been explored. In the present study, molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of DrPLL, a member of the PLL superfamily in Deinococcus radiodurans, bound to two substrates, δ-nonanoic lactone and paraoxon. It has been observed that there is a 16-fold increase in the catalytic efficiency of the two mutant strains of DrPLL (F26G/C72I) vs. the wild-type enzyme toward the hydrolysis of paraoxon, but an explanation for this behavior is currently lacking. The analysis of the molecular trajectories of DrPLL bound to δ-nonanoic lactone indicated that lactone-induced conformational changes take place in loop 8, which is near the active site. Binding to paraoxon may lead to conformational displacement of loop 1 residues, which could lead to the deformation of the active site and so trigger the entry of the paraoxon into the active site. The efficiency of the F26G/C72I mutant was increased by decreasing the displacement of loop 1 residues and increasing the flexibility of loop 8 residues. These results provide a molecular-level explanation for the experimental behavior.  相似文献   

7.
The presence and diversity of acyl homoserine lactone (AHL)-producers in an urban river biofilm were investigated during 60-day biofilm formation. AHL biosensors detected the presence of AHL-producers in 1–60-day river biofilms. Screening for AHL-producers resulted in 17 Aeromonas spp., 3 Pseudomonas spp., 3 Ensifer spp., and 1 Acinetobacter sp. Among these isolates, six of them were closely related to Acinetobacter tjernbergiae, Aeromonas allosaccharophila, Aeromonas aquariorum, Aeromonas jandaei, Pseudomonas panipatensis, and Ensifer adhaerens and represented novel AHL-producing species. Thin layer chromatography revealed that C4-homoserine lactone was prevailing in Aeromonas spp., whereas C6- and C8-homoserine lactones and their derivatives were prevailing in other strains. Using degenerate primers, novel AHL synthetase genes from the three Ensifer spp. were successfully amplified. This study reports for the first time the diversity of AHL-producers from a river biofilm and the variety of novel AHL synthetase genes in Ensifer group.  相似文献   

8.
Liu  Xiang  Wang  Wenxi  Li  Junyue  Li  Yue  Zhang  Jihui  Tan  Huarong 《中国科学:生命科学英文版》2021,64(10):1575-1589
Cell-cell communication is critical for bacterial survival in natural habitats, in which miscellaneous regulatory networks are encompassed. However, elucidating the interaction networks of a microbial community has been hindered by the population complexity. This study reveals that γ-butyrolactone(GBL) molecules from Streptomyces species, the major antibiotic producers,can directly bind to the acyl-homoserine lactone(AHL) receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing(QS) system. Subsequently, the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled. Based on the cross-talk between GBL and AHL signaling systems, combinatorial regulatory circuits(CRC) are designed and proved to be workable in Escherichia coli(E. coli). It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules. These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.  相似文献   

9.
Microscale processing techniques are rapidly emerging as a cost- effective means for parallel experimentation and hence the evaluation of large libraries of recombinant biocatalysts. In this work, the potential of an automated microscale process is demonstrated in a linked sequence of operations comprising fermentation, enzyme induction and bioconversion using three whole-cell biocatalysts each expressing cyclohexanone monoxygenase (CHMO). The biocatalysts, Escherichia coli TOP 10 [pQR239], E. coli JM107 and Acinetobacter calcoaceticus NCIMB 9871, were first produced in 96-deep square well fermentations at various carbon source concentrations (10 and 20 g L−1 glycerol). Following induction of CHMO activity biomass concentrations of up to 6 gDCW L−1 were obtained. Cells from each fermentation were subsequently used for the Baeyer–Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one, cyclohexanone and cyclopentanone. Each bioconversion was performed at two initial substrate concentrations (0.5 and 1.0 g L−1) in order to simultaneously explore both substrate specificity and inhibition. The microscale process sequences yielded quantitative and reproducible data for each biocatalyst on maximum growth rate, biomass yield, initial rate of lactone formation, specific biocatalyst activity and bioconversion yield. E. coli TOP 10 [pQR239] was demonstrated to be an efficient biocatalyst showing substrate specificities and substrate inhibition effects in line with previous studies. Finally, in order to show that the data obtained with E. coli TOP 10 [pQR239] at microwell scale (1,000 μL) could be related to larger scales of operation, the process was performed in a 2-L stirred-tank bioreactor. Using conditions designed to enable microwell kinetic measurements under none oxygen-limited conditions, the fermentation and bioconversion data obtained at the two scales showed good quantitative agreement. This study therefore confirms the potential of automated microscale experimentation for the whole-process evaluation of recombinant biocatalyst libraries and the specification of pilot and process scale operating conditions.  相似文献   

10.
1. The incorporation of dl-[2-(14)C]mevalonic acid lactone into beta-carotene and the phytol side chain of chlorophyll has been investigated in cotyledons of four species of pine seedlings (Pinus silvestris, P. contorta, P. radiata and P. jeffrei) grown in darkness and in light. 2. The relative incorporation of label into beta-carotene and the phytol side chain of chlorophyll is similar to that observed in experiments on monocotyledons and dicotyledons. 3. The relative incorporation of (14)CO(2) into beta-carotene and phytol is much higher than the incorporation of [2-(14)C]mevalonic acid.  相似文献   

11.
A germacranolide sesquiterpene lactone, 2α,5-epoxy-5,10-dihydroxy-6α-angeloyloxy-9β-(3-methylbutyloxy)-germacran-8α,12-olide (EDAG), isolated from Carpesium triste var. manshuricum, showed inhibitory activity in the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) mRNA and protein in LPS-activated macrophage cells. Molecular analysis reveals that these suppressive effects are correlated with the inhibition of NF-κB activation by EDAG. Immunoblotting showed that EDAG suppressed the LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Furthermore, EDAG showed reduced phosphorylation of ERK1/2 and p38 MAPK, whereas activation of JNK was not changed. These data suggest, at least in part, that EDAG utilizes the signal cascades of ERK1/2, p38 MAPK, and NF-κB for the suppression of iNOS gene expression.  相似文献   

12.
The furanditerpene 6α,7β-dihydroxyvouacapan-17β-oic acid (1) is a natural product biosynthesized by some species from the genus Pterodon (Leguminosae). This secondary metabolite has multiple biological activities that include anti-inflammatory, analgesic, plant growth regulatory, anti-edematogenic, photosystem II inhibitory and photosynthesis uncoupler, and antifungal properties. However, few studies on the antiproliferative profile of compound 1 and/or its derivatives have been reported up to date. Here, we describe the isolation of compound 1 from hexane extract of P. polygalaeflorus fruits as well as the semisynthesis of three lactone derivatives: 6α-hydroxyvouacapan-7β,17β-lactone (2), 6α-acetoxyvouacapan-7β,17β-lactone (3), and 6-oxovouacapan-7β,17β-lactone (4). Additionally, antiproliferative activity of these compounds against nine human cancer cell lines was investigated. Our results revealed that 6α-hydroxyvouacapan-7β,17β-lactone (2) was the most potent furanditerpene against all cancer cell lines studied. The presence of non-substituted hydroxyl group at C-6 and the presence of 7β,17β-lactone ring are important for the antiproliferative activity of these compounds.  相似文献   

13.
Synthetic analogue of the concanamycins, which lacks the hydrogen bond network existing in the concanamycin structure, retains vacuolar-type H+-ATPase (V-ATPase) inhibitory activity and induces apoptosis to cancer cells that overexpressing epidermal growth factor receptors (EGFR).  相似文献   

14.
We recently discovered a novel enzyme in the exoproteome of Starmerella bombicola, which is structurally related to Candida antarctica lipase A. A knockout strain for this enzyme does no longer produce lactonic sophorolipids, prompting us to believe that this protein is the missing S. bombicola lactone esterase (SBLE). SBLE catalyzes a rather unusual reaction, i.e., an intramolecular esterification (lactonization) of acidic sophorolipids in an aqueous environment, which raised questions about its activity and mode of action. Here, we report the heterologous production of this enzyme in Pichia pastoris and its purification in a two-step strategy. Purified recombinant SBLE (rSBLE) was used to perform HPLC and liquid chromatography mass spectrometry (LCMS)-based assays with different sophorolipid mixtures. We experimentally confirmed that SBLE is able to perform ring closure of acetylated acidic sophorolipids. This substrate was selected for rSBLE kinetic studies to estimate the apparent values of K m . We established that rSBLE displays optimal activity in the pH range of 3.5 to 6 and has an optimal temperature in the range of 20 to 50 °C. Additionally, we generated a rSBLE mutant through site-directed mutagenesis of Ser194 in the predicted active site pocket and show that this mutant is lacking the ability to lactonize sophorolipids. We therefore propose that SBLE operates via the common serine hydrolase mechanism in which the catalytic serine residue is assisted by a His/Asp pair.  相似文献   

15.
《Phytomedicine》2015,22(9):862-874
BackgroundThe t(2;5)(p23;q35) chromosomal translocation results in the expression of the fusion protein NPM/ALK that when expressed in T-lymphocytes gives rise to anaplastic large cell lymphomas (ALCL). In search of new therapy options the dichloromethane extract of the ethnomedicinal plant Neurolaena lobata (L.) R.Br. ex Cass was shown to inhibit NPM/ALK expression.PurposeTherefore, we analysed whether the active principles that were recently isolated and found to inhibit inflammatory responses specifically inhibit growth of NPM/ALK+ ALCL, leukaemia and breast cancer cells, but not of normal cells, and the intravasation through the lymphendothelial barrier.MethodsALCL, leukaemia and breast cancer cells, and normal peripheral blood mononuclear cells (PBMCs) were treated with isolated sesquiterpene lactones and analysed for cell cycle progression, proliferation, mitochondrial activity, apoptosis, protein and mRNA expression, NF-κB and cytochrome P450 activity, 12(S)-HETE production and lymphendothelial intravasation.ResultsIn vitro treatment of ALCL by neurolenin B suppressed NPM/ALK, JunB and PDGF-Rβ expression, inhibited the growth of ALCL cells late in M phase, and induced apoptosis via caspase 3 without compromising mitochondrial activity (as a measure of general exogenic toxicity). Moreover, neurolenin B attenuated tumour spheroid intravasation probably through inhibition of NF-κB and CYP1A1.ConclusionNeurolenin B specifically decreased pro-carcinogenic NPM/ALK expression in ALK+ ALCL cells and, via the inhibition of NF-kB signalling, attenuated tumour intra/extravasation into the lymphatics. Hence, neurolenin B may open new options to treat ALCL and to manage early metastatic processes to which no other therapies exist.  相似文献   

16.
There has been a significant global interest to produce bulk chemicals from renewable resources using engineered microorganisms. Large research programs have been launched by academia and industry towards this goal. Particularly, C4 chemicals such as succinic acid (SA) and 1,4-butanediol have been leading the path towards the commercialization of biobased technology with the effort of replacing chemical production. Here we present O-Succinyl-l-homoserine (SH) as a new, potentially important platform biochemical and demonstrate its central role as an intermediate in the production of SA, homoserine lactone (HSL), γ-butyrolactone (GBL) and its derivatives, and 1,4-butanediol (BDO). This technology encompasses (1) the genetic manipulation of Escherichia coli to produce SH with high productivity, (2) hydrolysis into SA and homoserine (HS) or homoserine lactone hydrochloride, and (3) chemical conversion of either HS or homoserine lactone HCL (HSL·HCl) into drop-in chemicals in polymer industry. This production strategy with environmental benefits is discussed in the perspective of targeting of fermented product and a process direction compared to petroleum-based chemical conversion, which may reduce the overall manufacturing cost.  相似文献   

17.
Crepis conyzaefolia (Gouan) Dalle Torre seed oil contains about 3% of (?)-(S,S)-12-hydroxy-13-octadec-cis-9-enolide (1), a lactone of (?)-threo-12,13-dihydroxyoleic acid. The absolute configuration of the acid has been established as D-12, L-13 (12-S, 13-S) and the lactone has the same absolute configuration.  相似文献   

18.
《Phytomedicine》2014,21(7):946-953
The tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) inhibitory activities of Cajanus cajan (leaves) crude methanolic extract, its fractions and its phytochemical constituents were evaluated in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Phytochemical investigation of the active ethyl acetate (CCE) and n-butanol (CCB) fractions of C. cajan L. leaves yielded 14 compounds. It was observed that both pinostrobin (9) and cajanus lactone (4) were found to be most active in inhibiting TNF-α (IC50 < 22 μM) and IL-1β (IC50 < 40 μM) whereas compounds 2, 3, 58, 10 and 14 showed moderate and mild effects (IC50 = 35.50–81.22 μM for TNF-α and 38.23–89.10 μM for IL-1β) in both the cell lines. Furthermore, at dose of 20 mg/kg, both pinostrobin (9) and cajanus lactone (4) were found to reduce LPS-induced TNF-α levels by 48.6% and 55.0% respectively and IL-1β levels by 53.1% and 41.8% respectively in Sprague Dawley (SD) rats. These findings suggest that C. cajan L. leaves can be developed as an effective herbal remedy for the treatment and prevention of inflammation or associated ailments.  相似文献   

19.
Using a set of methods (C-banding, DAPI-staining, fluorescence hybridization in situ (FISH) with probes of 26S and 5S rDNA, and analysis of meiosis), the first comparative cytogenetic study of three species of Macleaya, producers of complex isoquinoline alkaloids, cordate Macleaya cordata (Willd.) R. Br. (2n = 20), small-fruited Macleaya microcarpa (Maxim.) Fedde (2n = 20) and Macleaya kewensis Turrill (2n = 20), was first carried out. On the basis of morphometric analysis, formulas of karyotypes were made for each species. Species ideograms for M. cordata, M. microcarpa, and M. kewensis were constructed taking into account the polymorphic variants of the C-banding patterns and indicating the location of 26S and 5S rDNA sites. A comparative study revealed that the karyotypes of M. microcarpa and M. kewensis have more in common with each other than with M. cordata. Analysis of meiotic chromosomes suggests of genetic stability of Macleaya genomes. The results of chromosome analysis were used to confirm the close relationship of Macleaya and to clarify their phylogenetic relationships.  相似文献   

20.
A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp2 ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese’s (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-14C into RNA still continued even after the incorporation of N-acetyl-3H-d-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48°C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48°C. This mutant, ts42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back from 48 to 37°C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号