首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   

2.
Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus.  相似文献   

3.
Serum deprivation-induced HepG2 cell death is potentiated by CYP2E1   总被引:5,自引:0,他引:5  
Induction of oxidative stress plays a key role in serum deprivation-induced apoptosis. CYP2E1 plays an important role in toxicity of many chemicals and ethanol and produces oxidant stress. We investigated whether CYP2E1 expression can sensitize HepG2 cells to toxicity as a consequence of serum deprivation. The models used were HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells which do not express CYP2E1. E47 cells showed greater growth inhibition and enhanced cell death after serum deprivation, as compared to the C34 cells. DNA ladder and flow cytometry assays indicated that apoptosis occurred at earlier times after serum deprivation in E47 than C34 cells. Serum withdrawal-induced E47 cell death could be rescued by antioxidants, the mitochondrial permeability transition inhibitor cyclosporine A, z-DEVD-fmk, and a CYP2E1 inhibitor 4-methylpyrazole. Increased production of reactive oxygen species (ROS) and lipid peroxidation occurred in E47 cells after serum deprivation, and there was a corresponding decline in the E47 cell mitochondrial membrane potential and reduced glutathione (GSH) levels. We propose that the mechanism of this serum withdrawal plus CYP2E1 toxicity involves increased production of intracellular ROS, lipid peroxidation, and decline of GSH levels, which results in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of serum deprivation-induced cell death by CYP2E1 may contribute to the sensitivity of the liver to alcohol-induced ischemia and growth factor deprivation.  相似文献   

4.
Arsenic trioxide has been known to regulate many biological functions such as cell proliferation, apoptosis, differentiation, and angiogenesis in various cell lines. We investigated the involvement of GSH and ROS such as H(2)O(2) and O(2)(*-) in the death of As4.1 cells by arsenic trioxide. The intracellular ROS levels were changed depending on the concentration and length of incubation with arsenic trioxide. The intracellular O(2)(*-) level was significantly increased at all the concentrations tested. Arsenic trioxide reduced the intracellular GSH content. Treatment of Tiron, ROS scavenger decreased the levels of ROS in 10 microM arsenic trioxide-treated cells. Another ROS scavenger, Tempol did not decrease ROS levels in arsenic trioxide-treated cells, but slightly recovered the depleted GSH content and reduced the level of apoptosis in these cells. Exogenous SOD and catalase did not reduce the level of ROS, but did decrease the level of O(2)(*-). Both of them inhibited GSH depletion and apoptosis in arsenic trioxide-treated cells. In addition, ROS scavengers, SOD and catalase did not alter the accumulation of cells in the S phase induced by arsenic trioxide. Furthermore, JNK inhibitor rescued some cells from arsenic trioxide-induced apoptosis, and this inhibitor decreased the levels of O(2)(*-) and reduced the GSH depletion in these cells. In summary, we have demonstrated that arsenic trioxide potently generates ROS, especially O(2)(*-), in As4.1 juxtaglomerular cells, and Tempol, SOD, catalase, and JNK inhibitor partially rescued cells from arsenic trioxide-induced apoptosis through the up-regulation of intracellular GSH levels.  相似文献   

5.
J Liu  H M Shen  C N Ong 《Life sciences》2001,69(16):1833-1850
Recent studies have demonstrated that induction of apoptosis is related to the cell growth inhibition potential of Salvia Miltiorrhiza (SM), a traditional herbal medicine. In the present study, we further explore the mechanistic pathway involved in SM-induced apoptosis in human hepatoma HepG2 cells. A rapid decline of intracellular glutathione (GSH) and protein thiol content was found in SM-treated cells. Moreover. SM exposure resulted in mitochondrial dysfunction as demonstrated by: (i) the onset of mitochondrial permeability transition (MPT); (ii) the disruption of mitochondrial membrane potential (MMP); and (iii) the release of cytochrome c from mitochondria into the cytosol. Subsequently, elevated level of intracellular reactive oxygen species (ROS) was observed prior to the onset of DNA fragmentation. However, no caspase-3 cleavage was observed throughout the whole period of SM treatment, while a caspase-3-independent poly(ADP-ribose) polymerase (PARP) cleavage was noted at the late stage in SM-induced apoptosis. Pretreatment of cells with N-acetylcysteine (NAC), the GSH synthesis precursor, conferred complete protection against MMP loss, ROS generation and apoptosis induced by SM. MPT inhibitors, cyclosporin A plus trifluoperazine, partially restored intracellular GSH content, and reduced SM-induced ROS formation and subsequently inhibited cell death. Moreover, antioxidants NAC, deferoxamine and catalase had little effect on GSH depletion and mitochondrial dysfunction, yet still were able to completely protect cells from SM-induced apoptosis. Taken together, our results suggest that SM deplete intracellular thiols, which, in turn, causes MPT and subsequent increase in ROS generation, and eventually apoptotic cell death.  相似文献   

6.
7.
Arsenic trioxide (ATO) can regulate many biological functions such as apoptosis and differentiation in various cells. We investigated an involvement of ROS such as H(2)O(2) and O(2)(*-), and GSH in ATO-treated Calu-6 cell death. The levels of intracellular H(2)O(2) were decreased in ATO-treated Calu-6 cells at 72 h. However, the levels of O(2)(*-) were significantly increased. ATO reduced the intracellular GSH content. Many of the cells having depleted GSH contents were dead, as evidenced by the propidium iodine staining. The activity of CuZn-SOD was strongly down-regulated by ATO at 72 h while the activity of Mn-SOD was weakly up-regulated. The activity of catalase was decreased by ATO. ROS scavengers, Tiron and Trimetazidine did not reduce levels of apoptosis and intracellular O(2)(*-) in ATO-treated Calu-6 cells. Tempol showing a decrease in intracellular O(2)(*-) levels reduced the loss of mitochondrial transmembrane potential (DeltaPsi(m)). Treatment with NAC showing the recovery of GSH depletion and the decreased effect on O(2)(*-) levels in ATO-treated cells significantly inhibited apoptosis. In addition, BSO significantly increased the depletion of GSH content and apoptosis in ATO-treated cells. Treatment with SOD and catalase significantly reduced the levels of O(2)(*-) levels in ATO-treated cells, but did not inhibit apoptosis along with non-effect on the recovery of GSH depletion. Taken together, our results suggest that ATO induces apoptosis in Calu-6 cells via the depletion of the intracellular GSH contents rather than the changes of ROS levels.  相似文献   

8.
Globular adiponectin (gAd), a truncated form of adipocyte-derived cytokine, stimulates RAW 264 cells to produce reactive oxygen species (ROS), which trigger an apoptotic cascade. In this study, we investigated the generation of intracellular and mitochondrial ROS in gAd-stimulated RAW 264 cells. Treatment with gAd efficiently induced the generation of intracellular and mitochondrial ROS, as detected by dichlorodihydrofluorescein diacetate and MitoSOX fluorescence, respectively. Furthermore, gAd treatment significantly increased 8-oxoguanine, a specific indicator of oxidative DNA damage. The transfection of RAW 264 cells with iNOS- and gp91phox-specific small interfering RNA reduced markedly the generation of intracellular, but not mitochondrial, ROS. Quantitative PCR revealed that the expression ratio of Bcl-2 to Bax was reduced in a time-dependent manner in gAd-treated RAW 264 cells. The overexpression of Bcl-2 markedly inhibited gAd-induced apoptosis in RAW 264 cells and also reduced both the intracellular and the mitochondrial ROS generation induced by gAd treatment. Moreover, the overexpression of Bcl-2 significantly suppressed gAd-induced NO secretion and NOS activity. In addition, the inhibition of NOS activity partially reduced the oxidative DNA damage induced by gAd. Taken together, these results demonstrate that the gAd-induced apoptotic pathway acting via ROS/RNS generation involves Bcl-2.  相似文献   

9.
This study investigates the exposure of lead‐induced reactive oxygen species (ROS) generation, DNA damage, and apoptosis and also evaluates the therapeutic intervention using antioxidants in human renal proximal tubular cells (HK‐2 cells). Following treatment of HK‐2 cells with an increasing concentration of lead nitrate (0–50 μM) for 24 h, the intracellular ROS level increased whereas the GSH level decreased significantly in a dose‐dependent manner. Comet assay results revealed that lead nitrate showed the ability to increase the levels of DNA strand breaks in HK‐2 cells. Lead exposure also induced apoptosis through caspase‐3 activation at 30 μg/mL. Pretreatment with N‐acetylcysteine (NAC) and tannic acid showed a significant ameliorating effect on lead‐induced ROS, DNA damage, and apoptosis. In conclusion, lead induces ROS, which may exacerbate the DNA damage and apoptosis via caspase‐3 activation. Additionally, supplementation of antioxidants such as NAC and tannic acid may be used as salvage therapy for lead‐induced DNA damage and apoptosis in an exposed person.  相似文献   

10.
alpha-Hederin, a pentacyclic triterpene saponin isolated from the seeds of Nigella sativa, was recently reported to have potent in vivo antitumor activity against LL/2 (Lewis Lung carcinoma) in BDF1 mice. In this study we observed that alpha-hederin caused a dose- and time-dependent increase in apoptosis of murine leukemia P388 cells. In order to evaluate the possible mechanisms for apoptosis, the effects of alpha-hederin on intracellular thiol concentration, including reduced glutathione (GSH), and protein thiols, and the effects of pretreatment with N-acetlycysteine (NAC), a precursor of intracellular GSH synthesis, or buthionine sulfoxime (BSO), a specific inhibitor of intracellular GSH synthesis, on alpha-hederin-induced apoptosis were investigated. It was found that alpha-hederin rapidly depleted intracellular GSH and protein thiols prior to the occurrence of apoptosis. NAC significantly alleviated alpha-hederin-induced apoptosis, while BSO augmented alpha-hederin-induced apoptosis significantly. The depletion of cellular thiols observed after alpha-hederin treatment caused disruption of mitochondrial membrane potential (deltapsi(m)) and subsequently increased the production of reactive oxygen species (ROS) in P388 cells at an early time point. Bongkrekic acid (BA), a ligand of the mitochondrial adenine nucleotide translocator, and cyclosporin (CsA) attenuated the alpha-hederin-induced loss of deltapsi(m), and ROS production. Thus, oxidative stress after alpha-hederin treatment is an important event in alpha-hederin-induced apoptosis. As observed in this study, permeability transition of mitochondrial membrane occurs after depletion of GSH and precedes a state of reactive oxygen species (ROS) generation. Further, we observed that alpha-hederin caused the release of cytochrome c from the mitochondria to cytosol, leading to caspase-3 activation. Our findings thus demonstrate that changes in intracellular thiols and redox status leading to perturbance of mitochondrial functions are important components in the mechanism of alpha-hederin-induced cell death.  相似文献   

11.
Antimycin A (AMA) inhibits succinate oxidase and NADH oxidase, and also inhibits mitochondrial electron transport between cytochromes b and c. We investigated the involvement of ROS and GSH in AMA-induced HeLa cell death. AMA increased the intracellular H(2)O(2) and O(2)(*-) levels and reduced the intracellular GSH content. ROS scavengers (Tempol, Tiron, Trimetazidine and NAC) did not down-regulate the production of ROS and inhibit apoptosis in AMA-treated cells. Treatment with NAC and N-propylgallate showing the enhancement of GSH depletion in AMA-treated cells significantly intensified the levels of apoptosis. Calpain inhibitors I and II (calpain inhibitor III) and Ca(2+)-chelating agent (EGTA/AM) significantly reduced H(2)O(2) levels in AMA-treated HeLa cells. However, treatment with calpain inhibitor III intensified the levels of O(2)(*-) in AMA-treated cells. In addition, calpain inhibitor III strongly depleted GSH content with an enhancement of apoptosis in AMA-treated cells. Conclusively, the changes of ROS by AMA were not tightly correlated with apoptosis in HeLa cells. However, intracellular GSH levels are tightly related to AMA-induced cell death.  相似文献   

12.
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. α-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP++NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

13.
Microcystin-LR (MCLR) is a liver-specific toxin known as a tumour promoter in experimental animals. Its mechanisms of hepatotoxicity have been well documented; however, the mechanisms of other effects, in particular those related to its genotoxicity, are not well understood. In our previous studies, we showed that MCLR-induced DNA strand breaks are transiently present and that the damage is mediated by reactive oxygen species (ROS). In this study, we show that exposure of HepG2 cells to non-cytotoxic doses of MCLR-induced time-dependent alterations in the level of intracellular reduced glutathione (GSH). These comprised a rapid initial decrease followed by a gradual increase, reaching a maximum after 6 h of exposure, before returning to the control level after 8 h. During the first 4 h, expression of glutamate-cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis, increased, indicating an increased rate of de novo synthesis of GSH. The most important observation of this study, combined with the results of our previous studies is the correlation between the time course of alterations of intracellular GSH content and the formation and disappearance of MCLR-induced DNA damage. When the intracellular GSH level was reduced, MCLR-induced DNA damage was observed to increase. Later, when the level of intracellular GSH was normal or elevated, new DNA damage was not induced and existing damage was repaired. To confirm the role of GSH system in MCLR-induced genotoxicity, the intracellular GSH level was moderated by pre-treatment with buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and with N-acetylcysteine (NAC), a GSH precursor. Pre-treatment with BSO dramatically increased the susceptibility of HepG2 cells to MCLR-induced DNA damage, while pre-treatment with NAC almost completely prevented MCLR-induced DNA damage. Thus, intracellular GSH is shown to play a critical role in the cellular defence against MCLR-induced DNA damage in HepG2 cells.  相似文献   

14.
Lee JH  Park JW 《Free radical research》2005,39(12):1325-1333
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. alpha-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP+ +NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

15.
Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular O(2)(*-) levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of O(2)(*-).  相似文献   

16.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

17.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

18.
Excess in mitochondrial reactive oxygen species (ROS) is considered as a major cause of cellular oxidative stress. NADPH, the main intracellular reductant, has a key role in keeping glutathione in its reduced form GSH, which scavenges ROS and thus protects the cell from oxidative damage. Here, we report that SIRT5 desuccinylates and deglutarylates isocitrate dehydrogenase 2 (IDH2) and glucose‐6‐phosphate dehydrogenase (G6PD), respectively, and thus activates both NADPH‐producing enzymes. Moreover, we show that knockdown or knockout of SIRT5 leads to high levels of cellular ROS. SIRT5 inactivation leads to the inhibition of IDH2 and G6PD, thereby decreasing NADPH production, lowering GSH, impairing the ability to scavenge ROS, and increasing cellular susceptibility to oxidative stress. Our study uncovers a SIRT5‐dependent mechanism that regulates cellular NADPH homeostasis and redox potential by promoting IDH2 desuccinylation and G6PD deglutarylation.  相似文献   

19.
Sarsasapogenin is a steroidal sapogenin with antitumor properties. To explain the mechanism of its apoptotic effect, mitochondrial activity was assessed via a 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry (FCM) was used to estimate the changes in mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, and cellular-reduced glutathione (GSH) level. Laser scanning confocal microscope (LSCM) recorded instantaneous ROS burst after application of sarsasapogenin. Western blotting was used to determine the expression level and intracellular distribution of cytochrome c (cyt c). It is demonstrated that during apoptosis, ROS burst acted as an early event followed by depolarization of MMP, prolonged ROS generation, and significantly declined GSH level. Cyt c was upregulated and released from mitochondria to cytosol during the process. These findings show that a mitochondrial ROS burst is an early upstream apoptotic signal which may trigger the mitochondrial apoptotic pathway and play a vital role in sarsasapogenin-induced HepG2 cell apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号