首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Catenin plays a crucial role in cadherin-mediated adhesion by binding to β-catenin, F-actin, and vinculin, and its dysfunction is linked to a variety of cancers and developmental disorders. As a mechanotransducer in the cadherin complex at intercellular adhesions, mechanical and force-sensing properties of α-catenin are critical to its proper function. Biochemical data suggest that α-catenin adopts an autoinhibitory conformation, in the absence of junctional tension, and biophysical studies have shown that α-catenin is activated in a tension-dependent manner that in turn results in the recruitment of vinculin to strengthen the cadherin complex/F-actin linkage. However, the molecular switch mechanism from autoinhibited to the activated state remains unknown for α-catenin. Here, based on the results of an aggregate of 3 μs of molecular dynamics simulations, we have identified a dynamic salt-bridge network within the core M region of α-catenin that may be the structural determinant of the stability of the autoinhibitory conformation. According to our constant-force steered molecular dynamics simulations, the reorientation of the MII/MIII subdomains under force may constitute an initial step along the transition pathway. The simulations also suggest that the vinculin-binding domain (subdomain MI) is intrinsically much less stable than the other two subdomains in the M region (MII and MIII). Our findings reveal several key insights toward a complete understanding of the multistaged, force-induced conformational transition of α-catenin to the activated conformation.  相似文献   

2.
A major irrigation system in the Lower Valley of the Rió Negro, Argentina, has been invaded by aquatic plants, with Potamogeton illinoensis Morong dominant in irrigation channels and Potamogeton pectinatus L. dominant in drainage channels. Although several other macrophytes are present, problems are largely caused by the dominant species. Results are presented for plant biomass response to weed control treatments using a chain-cutting method in the principal irrigation channel of the system. Peak above-ground biomass of Potamogeton illinoensis was reduced by about 38% by this physical control regime. The treated populations regrew rapidly after spring clearance, but did not regrow after subsequent mid- and late-season clearance operations, even though untreated population biomass remained high during this period. The highest density of Potamogeton illinoensis ramets was found in treated areas. Chain- cutting produced no discernible effect on dissolved oxygen, water temperature, water conductivity, pH or light extinction coefficient compared with untreated check sectors of the channel.  相似文献   

3.
4.
Factories of the Future? Metabolic Engineering in Plant Cells   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

5.
Editor-in-ChiefREN Lu-quanProfessor, Key Laboratory of Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University atNanling Campus,'5988 Renmin Street, Changchun 130022, P. R. ChinaAssociate Chief EditorsJulian F. V. Vincent TONG JinProfessor, Center for Biomimetics and Natural Technologies, Professor, Key Laboratory of Terrain-Machine Bionics EngineeringDepartment of Mechanical Engineering, (Ministry of Education, China), Jilin University at N…  相似文献   

6.
7.
8.
9.
10.
Deng X  Marinov G  Marois Y  Guidoin R 《Biorheology》1999,36(5-6):391-399
This study is designed to better understand the mode of lymph transport, particularly through the extrinsic pumping by external compression of the lymph vessel. The pressure-diameter relationship of lymphatic segments isolated from the canine thoracic duct was examined using a laser optical micrometer measurement system. Results revealed that the thoracic duct displayed a high extensibility or compliance in the physiological pressure range, yet became progressively less so with increasing internal pressure. The calculated incremental circumferential modulus of the thoracic duct under physiological pressure (range of 2 to 6 cm H2O) showed values ranging from 1.2 x 10(4) to 3.61 x 10(5) dyn/cm2. At a pressure of 35 cm H2O, the modulus reached a limiting value of approximately 6.0 x 10(6) dyn/cm2. In the physiological pressure range, the relative wall thickness (h/R0) of the canine thoracic duct was approximately 3.5%, which was much lower than that reported for canine arterial segments and similar in value to that of the canine jugular vein. In conclusion, the pressure-diameter curve of the canine thoracic duct was shown to resemble that of venous vessels. However, the circumferential elastic modulus of the thoracic duct wall was lower than the moduli of veins, proving that lymphatics are more compliant than veins. This suggests lymph flow in the thoracic duct may be better promoted by external compression of the lymphatic vessel.  相似文献   

11.
Most multicellular organisms can be categorised by two words: hierarchy and composite. The underlying fractal geometry of nature - at least in terms of provision of infrastructure - provides much of the hierarchy, although many materials for which infrastructure is not an integral factor are also strongly hierarchical. Plants can therefore be modelled using recursive computer programs which add structures as the size increases. However, problems with mechanical stability also increase as the structure grows, so the plant changes from deriving stiffness from intevaal pressure to cross-linking the cell wall components permanently. However, this compromises the ability of the plant to grow and repair itself.  相似文献   

12.
Concerns over sustained availability of fossil resources along with environmental impact of their use have stimulated the development of alternative methods for fuel and chemical production from renewable resources. In this work, we present a new approach to produce α,β-unsaturated carboxylic acids (α,β-UCAs) using an engineered reversal of the β-oxidation (r-BOX) cycle. To increase the availability of both acyl-CoAs and enoyl-CoAs for α,β-UCA production, we use an engineered Escherichia coli strain devoid of mixed-acid fermentation pathways and known thioesterases. Core genes for r-BOX such as thiolase, hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and enoyl-CoA reductase were chromosomally overexpressed under the control of a cumate inducible phage promoter. Native E. coli thioesterase YdiI was used as the cycle-terminating enzyme, as it was found to have not only the ability to convert trans-enoyl-CoAs to the corresponding α,β-UCAs, but also a very low catalytic efficiency on acetyl-CoA, the primer and extender unit for the r-BOX pathway. Coupling of r-BOX with YdiI led to crotonic acid production at titers reaching 1.5 g/L in flask cultures and 3.2 g/L in a controlled bioreactor. The engineered r-BOX pathway was also used to achieve for the first time the production of 2-hexenoic acid, 2-octenoic acid, and 2-decenoic acid at a final titer of 0.2 g/L. The superior nature of the engineered pathway was further validated through the use of in silico metabolic flux analysis, which showed the ability of r-BOX to support growth-coupled production of α,β-UCAs with a higher ATP efficiency than the widely used fatty acid biosynthesis pathway. Taken together, our findings suggest that r-BOX could be an ideal platform to implement the biological production of α,β-UCAs.  相似文献   

13.
G protein-coupled receptors (GPCRs) are a class of versatile proteins that transduce signals across membranes. Extracellular stimuli induce inter- and intramolecular interactions that change the functional state of GPCRs and activate intracellular messenger molecules. How these interactions are established and how they modulate the functional state of GPCRs remain to be understood. We used dynamic single-molecule force spectroscopy to investigate how ligand binding modulates the energy landscape of the human β(2) adrenergic receptor (β(2)AR). Five different ligands representing either agonists, inverse agonists or neutral antagonists established a complex network of interactions that tuned the kinetic, energetic, and mechanical properties of functionally important structural regions of β(2)AR. These interactions were specific to the efficacy profile of the ligands investigated and suggest that the functional modulation of GPCRs follows structurally well-defined interaction patterns.  相似文献   

14.
Strictosidine synthases catalyze the formation of strictosidine, a key intermediate in the biosynthesis of a large variety of monoterpenoid indole alkaloids. Efforts to utilize these biocatalysts for the preparation of strictosidine analogs have however been of limited success due to the high substrate specificity of these enzymes. We have explored the impact of a protein engineering approach called circular permutation on the activity of strictosidine synthase from the Indian medicinal plant Rauvolfia serpentina. To expedite the discovery process, our study departs from the usual process of creating a random protein library, followed by extensive screening. Instead, a small, focused library of circular permutated variants of the six bladed β-propeller protein was prepared, specifically probing two regions which cover the enzyme active site. The observed activity changes suggest important roles of both regions in protein folding, stability and catalysis.  相似文献   

15.
Why Is the Mechanical Efficiency of F1-ATPase So High?   总被引:2,自引:0,他引:2  
The experimentally measured mechanical efficiency of the F1-ATPase under viscous loading is nearly 100%, far higher than any other hydrolysis-driven molecular motor (Yasuda et al., 1998). Here we give a molecular explanation for this remarkable property.  相似文献   

16.
The zooplankton composition is studied in the thermokarst, glacial and meteorite lakes, channels, former riverbeds, and hollows in the basin of Anadyr’. We found 174 taxa: 78, Rotatoria, 55, Cladocera, and 41, Copepoda. The most diverse is the lake fauna: 51 taxa of Rotatoria, 48, Cladocera, and 37, Copepoda. The thermokarst Lake Maiorskoe hosts 68 taxa: 31, Rotatoria, 14, Cladocera, and 23, Copepoda, wheras the cold ultraoligotrophic Lake El’gygytgyn features only one species of Cyclop of the group scutifer Cyclops neymanae Strel., and Rotatoria and Cladocera are present as allochtonous forms. The Copepoda illustrate the relations of the Anadyr’ fauna with those of Europe, North America, and Japan.  相似文献   

17.
Biofilm formation increases both the survival and infectivity of Vibrio cholerae, the causative agent of cholera. V. cholerae is capable of forming biofilms on solid surfaces and at the air-liquid interface, termed pellicles. Known components of the extracellular matrix include the matrix proteins Bap1, RbmA, and RbmC, an exopolysaccharide termed Vibrio polysaccharide, and DNA. In this work, we examined a rugose strain of V. cholerae and its mutants unable to produce matrix proteins by interfacial rheology to compare the evolution of pellicle elasticity in real time to understand the molecular basis of matrix protein contributions to pellicle integrity and elasticity. Together with electron micrographs, visual inspection, and contact angle measurements of the pellicles, we defined distinct contributions of the matrix proteins to pellicle morphology, microscale architecture, and mechanical properties. Furthermore, we discovered that Bap1 is uniquely required for the maintenance of the mechanical strength of the pellicle over time and contributes to the hydrophobicity of the pellicle. Thus, Bap1 presents an important matrix component to target in the prevention and dispersal of V. cholerae biofilms.  相似文献   

18.
The biosynthesis of complex reduced polyketides is catalysed in actinomycetes by large multifunctional enzymes, the modular Type I polyketide synthases (PKSs). Most of our current knowledge of such systems stems from the study of a restricted number of macrolide-synthesising enzymes. The sequencing of the genes for the biosynthesis of monensin A, a typical polyether ionophore polyketide, provided the first genetic evidence for the mechanism of oxidative cyclisation through which polyethers such as monensin are formed from the uncyclised products of the PKS. Two intriguing genes associated with the monensin PKS cluster code for proteins, which show strong homology with enzymes that trigger double bond migrations in steroid biosynthesis by generation of an extended enolate of an unsaturated ketone residue. A similar mechanism operating at the stage of an enoyl ester intermediate during chain extension on a PKS could allow isomerisation of an E double bond to the Z isomer. This process, together with epoxidations and cyclisations, form the basis of a revised proposal for monensin formation. The monensin PKS has also provided fresh insight into general features of catalysis by modular PKSs, in particular into the mechanism of chain initiation. Journal of Industrial Microbiology & Biotechnology (2001) 27, 360–367. Received 18 March 2001/ Accepted in revised form 09 July 2001  相似文献   

19.
20.
Ever since the technique of coaxing ordinary skin cells into becoming pluripotent stem cells (iPSCs) has been developed, which have the potential to become any cell or tissue in the body, efforts were made to improve the approach because some major challenges. Increasing evidence suggests that several microRNAs (miRNAs) are involved in early embryonic development and embryonic stem cell formation, known as embryonic stem cell (ESC)-specific miRNAs, particularly the miR-302 family. We summarized here a novel approach to generate iPSCs by using miR-302 and its related miRNAs such as miR-367. The development of this miR-302/367-mediated iPSC (termed mirPSC) may provide tools to deal with the obstacles facing some current iPSC reprogramming methods. The mechanism by which miR-302/367 induce iPSC reprogramming is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号