首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetically-modified Sphingomonas sp. was prepared using covalent binding of magnetic nanoparticles on to the cell surface. The magnetic modified bacteria were immobilized in the fixed-bed bioreactors (FBR) by internal and external magnetic fields for the biodetoxification of a model organophosphate, parathion: 93 % of substrate (50 mg parathion/l) was hydrolyzed at 0.5 ml/min in internal magnetic field fixed-bed bioreactor. The deactivation rate constants (at 1 ml/min) were 0.97 × 10?3, 1.24 × 10?3 and 4.17 × 10?3 h?1 for immobilized bacteria in external and internal magnetic field fixed-bed bioreactor and FBR, respectively. The deactivation rate constant for immobilized magnetically modified bacteria in external magnetic field fixed-bed bioreactor (EMFFBR) was 77 % lower than that of immobilized cells by entrapping method on porous basalt beads in FBR at 1 ml/min. Immobilized magnetic modified bacteria exhibited maximum enzyme stability in EMFFBR.  相似文献   

2.
Arthrobacter simplex cells have been covalently immobilized to granules of microcrystallized regenerated cellulose by means of N-hydroxymethyl, N′-glucosylurea groups at pH 8.5, 18°C and cell suspension concentration of 60 mg/ml. The immobilization yield was found to exceed 100%. The maximum initial rate of Cortisol transformation to Prednisolone remained almost constant after 20-fold transformation in a nutrient medium containing 0.5% peptone at pH 8.0, 32°C and aeration with oxygen. The effect of the substrate concentration on the activity of the immobilized cells, as well as of the ratio between substrate and immobilized cells on the degree of transformation, was investigated. The immobilized cells were characterized by means of electronmicroscopic studies. Microbiological observations have shown that immobilized cells can proliferate and the free cells obtained are accumulated in the nutrient medium. The immobilized cells preserve their viability for a long time when they are stored at 4°C.  相似文献   

3.
A new method for covering magnetic particles with a stable non-porous layer of a material like zeolite or activated carbon was used for the preparation of support materials with good properties for the immobilization of yeast Saccharomyces cerevisiae cells. The immobilized cells can be used in batch and continuous alcoholic fermentation. A productivity of 35.6 g ethanol/l · h was reached. The adsorption isotherms of the immobilized yeast cells were determined. Yeast cell immobilization on non-porous magnetic supports obeyed the Langmuir isotherm equation. Satisfactory results were obtained also from repeated batch fermentations with fixed cells on supports additionally treated with glutaraldehyde or by simple adsorption.  相似文献   

4.
Using enrichment culture technique, two isolates that brought a significant degradation and dispersion of crude oil were obtained from contaminated sediments of the Bohai Bay, China. 16S rRNA gene sequencing and phylogenetic analysis indicated that the two bacterial strains affiliated with the genera Vibrio and Acinetobacter. Subsequently, the bacterial cells were immobilized on the surface of cotton fibers. Cotton fibers were used as crude oil sorbent as well as a biocarrier for bacteria immobilization. Among the two isolates, the marine bacteria Acinetobacter sp. HC8-3S showed a strong binding to the cotton fibers, possibly enhanced through extracellular dispersant excreted by Acinetobacter sp. HC8-3S. Both planktonic and immobilized bacteria showed relatively high biodegradation (>60%) of saturated hydrocarbons fraction of crude oil, in the pH range of 5.6–8.6. The degradation activities of planktonic and immobilized bacteria were not affected significantly when the NaCl concentration reached 70 g/L. The immobilized bacterial cells exhibited an enhanced biodegradation of crude oil. The efficiency of saturated hydrocarbons degradation by the immobilized bacterial cells increased about 30% compared to the planktonic bacterial cells.  相似文献   

5.
Bacillus subtilis possessing a stereospecific menthyl esterase has been immobilized in a polyurethane foam and used for the hydrolysis of menthyl ester. The specific activity of cells immobilized in polyurethane foam decreased as the cell loading was increased. The aqueous content of the immobilized biocatalyst particles influenced the activity. The activity half-life of about 400 h observed for the immobilized biocatalyst is 66 × greater than that observed for free bacteria.  相似文献   

6.
Arthrobacter simplex has been successfully immobilized by adhesion on glass, either by coating the support with colloidal particles of hydrous alumina or by pretreating the cells with aluminium ions. The use of glass slides as a model support has shown that a single, dense and regular layer of immobilized cells is achieved. The quantity of immobilized cells is about 7 × 107 cells cm?2. Immobilization on glass beads or glass wool packed as a bed in a column has also been successful. Transformation of cortisol to prednisolone has been tested under no-growth conditions in the absence of nutrients. The specific activity of immobilized cells is not significantly different from that of free cells. The use of a microreactor with the immobilized bacteria as biocatalyst demonstrated the feasibility of repeated use of the microorganisms.  相似文献   

7.
《Phytochemistry》1987,26(12):3235-3240
(S)-Tetrahydroprotoberberine oxidase (STOX) has been isolated in enriched (7.4-fold) form from a high yielding cell suspension of Berberis wilsoniae var. subcaulialata in a three step procedure and was immobilized by several different methods. The properties of immobilized STOX were compared with immobilized Berberis cells and with the soluble enzyme. Although pH and temperature optima were shifted by immobilization, Km-values with (S)-norreticuline remained unaffected. The stability of immobilized STOX was 50 times better than the free enzyme. A cyclic process is described using the stereospecific enzymatic oxidation of (S)norreticuline to 1,2-dehydronorreticuline followed by sodium borohydride reduction for the transformation of racemic norreticuline to the (R)-enantiomer.  相似文献   

8.
Enzymatic oxidative degradation of EDTA and EDTA complexes with metals has been investigated using immobilized cells of Chelativorans oligotrophicus LPM-4. A polarographic method, which makes it possible to register oxygen consumption by cells, has been used. For the first time, it has been indicated that the Cd-EDTA and Ni-EDTA complexes undergo degradation by the bacteria under study.  相似文献   

9.
Immobilization of Photobacterium phosphoreum bacteria in polyvinyl alcohol cryogel was performed in order to develop biosensors used for ecotoxicant biomonitoring. The immobilization procedure, storage, and application of the immobilized cells for biomonitoring were optimized. It was shown that the immobilized cells demonstrate significantly higher stability and a longer duration of light emission than free bacteria. A discrete analysis of heavy metals and chlorophenols was conducted using the obtained biosensor samples.  相似文献   

10.
Fe3O4-Arg was selected as the optimal carrier due to its high activity recovery of immobilized cells in the preparation of Fe3O4-Arg-Cells. The optimal immobilization conditions for the preparation of Fe3O4-Arg-Cells were 30 °C, 4 h, pH 7, and 3 g dry yeast. The activity recovery of immobilized cells reached 76.8 %. For a batch reduction in a shaker in an alternating magnetic field, Fe3O4-Arg-Cells were used as a catalyst to gain ethyl (R)-4-chloro-3-hydroxybutyrate ((R)-CHBE). For further improvement in reduction productivity, a continuous reduction in the magnetic fluidized bed reactor system (MFBRS) was completed. Under their optimal transformation conditions, it took 24 h for Fe3O4-Arg-Cells to complete the conversion of ethyl 4-chloro-3-oxobutanoate (COBE) (0.8553 mol/L) in the shaker and only 8 h for the batch reduction in an alternating magnetic field. Continuous reduction in MFBRS provided new ideas for the efficient production of (R)-CHBE; 1.5882 mol/L (10 mL) of COBE can be completely converted in 6 h. The conversion and enantiomeric excess (e.e.) of (R)-CHBE were 100 % and above 99.9 % respectively, in the three reaction systems mentioned above.  相似文献   

11.
Immobilization of microorganisms on/in insoluble carriers is widely used to stabilize functional activity of microbial cells in industrial biotechnology. We immobilized Rhodococcus ruber, an important hydrocarbon degrader, on biosurfactant-coated sawdust. A biosurfactant produced by R. ruber in the presence of liquid hydrocarbons was found to enhance rhodococcal adhesion to solid surfaces, and thus, it was used as a hydrophobizing agent to improve bacterial attachment to a sawdust carrier. Compared to previously used hydrophobizers (drying oil and n-hexadecane) and emulsifiers (methyl- and carboxymethyl cellulose, poly(vinyl alcohol), and Tween 80), Rhodococcus biosurfactant produced more stable and homogenous coatings on wood surfaces, thus resulting in higher sawdust affinity to hydrocarbons, uniform monolayer distribution of immobilized R. ruber cells (immobilization yield 29–30 mg dry cells/g), and twofold increase in hydrocarbon biooxidation rates compared to free rhodococcal cells. Two physical methods, i.e., high-resolution profilometry and infrared thermography, were applied to examine wood surface characteristics and distribution of immobilized R. ruber cells. Sawdust-immobilized R. ruber can be used as an efficient biocatalyst for hydrocarbon transformation and degradation.  相似文献   

12.
Enzymatic production of dihydroxyacetone (DHA) was studied by immobilization of the whole cells of acetic acid bacteria capable of oxidizing glycerol to DHA. Acetobacter xylinum A-9 cells immobilized in a polyacrylamide gel were selected as the most favorable enzyme preparation. The enzymatic properties of immobilized cells converting glycerol to DHA were investigated and compared with those of intact cells. The optimum pH for the immobilized cells was broad (4.0 to 5.5), whereas the intact cells had a narrow pH optimum at 5.5. The thermal stability of the immobilized cells was somewhat higher than that of the intact cells. Apparent Km values for glycerol with both intact and immobilized cells were about equal, 6.3 × 10−2 to 6.5 × 10−2 M. The complete conversion of glycerol to DHA was achieved within 40 h under optimum conditions, and pure crystalline DHA was readily isolated from the reaction mixture with over 80% yield.  相似文献   

13.
The transformation dynamics of 2- and 4-cyanopyridines by cells suspended and adsorbed on inorganic carriers has been studied in the Rhodococcus ruber gt1 possessing nitrile hydratase activity and the Pseudomonas fluorescens C2 containing nitrilase. It was shown that both nitrile hydratase and nitrilase activities of immobilized cells against 2-cyanopyridine were 1.5–4 times lower compared to 4-cyanopyridine and 1.6–2 times lower than the activities of free cells against 2-cyanpopyridine. The possibility of obtaining isonicotinic acid during the combined conversion of 4-cyanopyridine by a mixed suspension of R. ruber gt1 cells with a high level of nitrile hydratase activity and R. erythropolis 11-2 cells with a pronounced activity of amidase has been shown. Immobilization of Rhodococcus cells on raw coal and Pseudomonas cells on kaolin was shown to yield a heterogeneous biocatalyst for the efficient transformation of cyanopyridines into respective amides and carboxylic acids.  相似文献   

14.
The effect of cell storage at ?18°C for 18–24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus oryzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 5°C for 18 h of immobilized cells of the yeast Saccharomyces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.  相似文献   

15.
Acetic acid bacteria Gluconobacter oxydans subsp. industrius RKM V-1280 were immobilized into a synthetic matrix based on polyvinyl alcohol modified with N-vinylpyrrolidone and used as biocatalysts for the development of bioanodes for microbial fuel cells. The immobilization method did not significantly affect bacterial substrate specificity. Bioanodes based on immobilized bacteria functioned stably for 7 days. The maximum voltage (fuel cell signal) was reached when 100–130 μM of an electron transport mediator, 2,6-dichlorophenolindophenol, was added into the anode compartment. The fuel cell signals reached a maximum at a glucose concentration higher than 6 mM. The power output of the laboratory model of a fuel cell based on the developed bioanode reached 7 mW/m2 with the use of fermentation industry wastes as fuel.  相似文献   

16.
Fluorinated aromatic compounds are significant environmental pollutants, and microorganisms play important roles in their biodegradation. The effect of fluorine substitution on the transformation of fluorobiphenyl in two bacteria was investigated. Pseudomonas pseudoalcaligenes KF707 and Burkholderia xenovorans LB400 used 2,3,4,5,6-pentafluorobiphenyl and 4,4??-difluorobiphenyl as sole sources of carbon and energy. The catabolism of the fluorinated compounds was examined by gas chromatography?Cmass spectrometry and fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), and revealed that the bacteria employed the upper pathway of biphenyl catabolism to degrade these xenobiotics. The novel fluorometabolites 3-pentafluorophenyl-cyclohexa-3,5-diene-1,2-diol and 3-pentafluorophenyl-benzene-1,2-diol were detected in the supernatants of biphenyl-grown resting cells incubated with 2,3,4,5,6-pentafluorobiphenyl, most likely as a consequence of the actions of BphA and BphB. 4-Fluorobenzoate was detected in cultures incubated with 4,4??-difluorobiphenyl and 19F NMR analysis of the supernatant from P. pseudoalcaligenes KF707 revealed the presence of additional water-soluble fluorometabolites.  相似文献   

17.
Immobilized Pseudomonas sp. HZ519 cells have been used for transformation of validamycin A to valienamine and the degradation pathway of validamycin A by Pseudomonas sp. HZ519 has also been studied. Substrate inhibition in immobilized cell system was avoided. An average of 8.6 g L?1 valienamine concentration was obtained when concentration of validamycin A was increased up to 120 g L?1. Through a treatment of the immobilized cells with 0.3 mol L?1 substrate, the activity of the immobilized cells was increased distinctly. Compared with free cells, the productivity of valienamine by CA-immobilized cells was improved about three times. The reusability of the immobilized cells was evaluated with repeated–batch degradation experiments. The Tiele modulus was obtained from the experimental effectiveness factor. The result showed that the degradation process in the immobilized system was governed by intraparticle diffusion and chemical reaction.  相似文献   

18.
Staphylococcus aureus is a common hospital and household pathogen. Given the emergence of antibiotic-resistant derivatives of this pathogen resulting from the use of antibiotics as general treatment, development of alternative therapeutic strategies is urgently needed. Here, we assess the feasibility of killing S. aureus cells in vitro and in vivo through magnetic hyperthermia mediated by magnetotactic bacteria that possess magnetic nanocrystals and demonstrate magnetically steered swimming. The S. aureus suspension was added to magnetotactic MO-1 bacteria either directly or after coating with anti-MO-1 polyclonal antibodies. The suspensions were then subjected to an alternating magnetic field (AMF) for 1 h. S. aureus viability was subsequently assessed through conventional plate counting and flow cytometry. We found that approximately 30% of the S. aureus cells mixed with uncoated MO-1 cells were killed after AMF treatment. Moreover, attachment between the magnetotactic bacteria and S. aureus increased the killing efficiency of hyperthermia to more than 50%. Using mouse models, we demonstrated that magnetic hyperthermia mediated by antibody-coated magnetotactic MO-1 bacteria significantly improved wound healing. These results collectively demonstrated the effective eradication of S. aureus both in vitro and in vivo, indicating the potential of magnetotactic bacterium-mediated magnetic hyperthermia as a treatment for S. aureus-induced skin or wound infections.  相似文献   

19.
An immobilized cell microchannel bioreactor was designed to test continuous fermentation. The fermentation set-up included a bottom hydrophilic quartz channel to immobilize cells using 0.4 wt% polyethyleneimine and a top channel designed to continuously remove metabolically generated carbon dioxide using hydrophobic polypropylene. To evaluate fermentation characteristics of immobilized cells, ethanol fermentation was carried out using Saccharomyces cerevisiae and Pichia stipitis. The immobilized cell microchannel bioreactor was used to identify long-term activity of immobilized S. cerevisiae cells. The continuous flow microchannel bioreactor was operated stably over a period of 1 month. The immobilized cell microchannel bioreactor was used to examine the characteristics cells that consumed mixed substrates. The concentration ratio of glucose to xylose for simultaneous utilization of hemicellulosic sugars was evaluated using the microchannel bioreactor and the results were compared with those obtained by using conventional batch fermentation with P. stipitis.  相似文献   

20.
The binding of viable Escherichia coli cells to an immobilized ligand of a surface receptor for maltodextrins has recently been demonstrated (T. Ferenci and K. S. Lee, J. Mol. Biol. 160:431-444, 1982). The interaction of bacteria and ligand immobilized in a chromatographic column was investigated over a wide range of applied cell densities, temperatures, eluant pH values, osmotic concentrations, and flow rates. Over 95% retention of bacteria applied to starch-Sepharose was found at cell densities up to 109 per ml of matrix, between pH 5.5 and 8.0, between 8 and 55°C, in the presence of 0 to 0.5 M NaCl, and at elution flow rates up to 37 column volumes per h. The catalytic capability and stability of affinity-immobilized cells was demonstrated with the cytoplasmic β-galactosidase activity of starch-bound cells. Intact immobilized bacteria exhibited slowly increasing β-galactosidase activity over several days with a plateau after 6 days. Bacteria made permeable by treatment with toluene were also bound to starch-Sepharose but showed maximum β-galactosidase activity within 1 day and exhibited no loss of enzyme activity in 8 days of continuous elution at ambient temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号