首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Timed Up & Go test (TUG) is functional test and is a part of routine clinical examinations. The instrumented Timed Up & Go test enables its segmentation to sub-tasks: sit-to-stand, walking forward, turning, walking back, stand-to-sit, and consequently the computation of task-specific parameters and sub-tasks separately. However, there are no data on whether walking forward parameters differ from the walking back parameters. This study tested the differences between walking forward and walking back in the TUG extended to 10 m for 17 spatio-temporal gait parameters. All parameters were obtained from a GAITRite® pressure sensitive walkway (CIR Systems, Inc.). The differences were assessed for healthy controls and Parkinson's disease (PD) patients. None of investigated parameters exhibited a difference between both gait subtasks for healthy subjects group. Five parameters of interest, namely velocity, step length, stride length, stride velocity, and the proportion of the double support phase with respect to gait cycle duration, showed a statistically significant difference between gait for walking forward and walking back in PD patients. Therefore, we recommend a separate assessment for walking forward and walking back rather than averaging both gaits together.  相似文献   

2.

Objective

The control of gait requires executive and attentional functions. As preterm children show executive and attentional deficits compared to full-term children, performing concurrent tasks that impose additional cognitive load may lead to poorer walking performance in preterm compared to full-term children. Knowledge regarding gait in preterm children after early childhood is scarce. We examined straight walking and if it is more affected in very preterm than in full-term children in dual-task paradigms.

Study design

Twenty preterm children with very low birth-weight (≤ 1500 g), 24 preterm children with birth-weight > 1500 g, and 44 full-term children, born between 2001 and 2006, were investigated. Gait was assessed using an electronic walkway system (GAITRite) while walking without a concurrent task (single-task) and while performing one concurrent (dual-task) or two concurrent (triple-task) tasks. Spatio-temporal gait parameters (gait velocity, cadence, stride length, single support time, double support time), normalized gait parameters (normalized velocity, normalized cadence, normalized stride length) and gait variability parameters (stride velocity variability, stride length variability) were analyzed.

Results

In dual- and triple-task conditions children showed decreased gait velocity, cadence, stride length, as well as increased single support time, double support time and gait variability compared to single-task walking. Further, results showed systematic decreases in stride velocity variability from preterm children with very low birth weight (≤ 1500 g) to preterm children with birth weight > 1500 g to full-term children. There were no significant interactions between walking conditions and prematurity status.

Conclusions

Dual and triple tasking affects gait of preterm and full-term children, confirming previous results that walking requires executive and attentional functions. Birth-weight dependent systematic changes in stride velocity variability indicate poorer walking performance in preterm children who were less mature at birth.  相似文献   

3.
Reduced foot clearance when walking may increase the risk of trips and falls in people with Parkinson’s disease (PD). Changes in foot clearance in people with PD are likely to be associated with temporal-spatial characteristics of gait such as walking slowly which evokes alterations in the temporal-spatial control of stepping patterns. Enhancing our understanding of the temporal-spatial determinants of foot clearance may inform the design of falls prevention therapies.Thirty-six people with PD and 38 age-matched controls completed four intermittent walks under two conditions: self-selected and fast gait velocity. Temporal-spatial characteristics of gait and foot (heel and toe) clearance outcomes were obtained using an instrumented walkway and 3D motion capture, respectively. A general linear model was used to quantify the effect of PD and gait velocity on gait and foot clearance. Regression evaluated the temporal and spatial gait predictors of minimum toe clearance (MTC).PD walked slower regardless of condition (p = .016) and tended to increase their step length to achieve a faster gait velocity. Step length and the walk ratio consistently explained the greatest proportion of variance in MTC (>28% and >33%, respectively) regardless of group or walking condition (p < .001).Our results suggest step length is the primary determinant of MTC regardless of pathology. Interventions that focus on increasing step length may help to reduce the risk of trips and falls during gait, however, clinical trials are required for robust evaluation.  相似文献   

4.
This article describes basic parameters characterizing walking of the stick insect Aretaon asperrimus to allow a comparative approach with other insects studied. As in many other animals, geometrical parameters such as step amplitude and leg extreme positions do not vary with walking velocity. However, the relation between swing duration and stance duration is quite constant, in contrast to most insects studied. Therefore, velocity profiles during swing vary with walking velocity whereas time course of leg trajectories and leg angle trajectories are independent of walking velocity. Nevertheless, A. asperrimus does not show a classical tripod gait, but performs a metachronal, or tetrapod, gait, showing phase values differing from 0.5 between ipsilateral neighbouring legs. As in Carausius morosus, the detailed shape of the swing trajectory may depend on the form of the substrate. Effects describing coordinating influences between legs have been found that prevent the start of a swing as long as the posterior leg performs a swing. Further, the treading on tarsus reflex can be observed in Aretaon. No hint to the existence of a targeting influence has been found. Control of rearward walking is easiest interpreted by maintaining the basic rules but an anterior-posterior reversal of the information flow.  相似文献   

5.
6.
Most studies of salamander locomotion have focused either on swimming or terrestrial walking, but some salamanders also use limb-based locomotion while submerged under water (aquatic walking). In this study we used video motion analysis to describe the aquatic walking gait of Siren lacertina, an elongate salamander with reduced forelimbs and no hindlimbs. We found that S. lacertina uses a bipedal-undulatory gait, which combines alternating use of the forelimbs with a traveling undulatory wave. Each forelimb is in contact with the substrate for about 50% of the stride cycle and forelimbs have little temporal overlap in contact intervals. We quantified the relative timing and frequency of limb and tail movements and found that, unlike the terrestrial gaits of most salamanders, axial and appendicular movements are decoupled during aquatic walking. We found no significant relationship between stride frequency and aquatic walking velocity, but we did find a statistically significant relationship between tailbeat frequency and aquatic walking velocity, which suggests that aquatic walking speed is mainly modulated by axial movements. By comparing axial wavespeed and distance traveled per tailbeat during swimming (forelimbs not used) and aquatic walking (forelimbs used), we found lower wavespeed and greater distance traveled per tailbeat during aquatic walking. These findings suggest that the reduced forelimbs of S. lacertina contribute to forward propulsion during aquatic walking.  相似文献   

7.
The purpose of this study was to investigate the effects of transversely sloped ballasted walking surface on gait and rearfoot motion (RFM) parameters. Motion analysis was performed with 20 healthy participants (15 male and 5 female) walking in six surface-slope conditions: two surfaces (solid and ballasted) by three slopes (0, 5, and 10 degrees). The gait parameters (walking velocity, step length, step rate, step width, stance time, and toe-out angle) showed significant surface effect (p = .004) and surface-slope interaction (p = .017). The RFM motion parameters (peak everted/inverted position, eversion/inversion velocity, and acceleration) revealed significant surface (p = .004) and slope (p = .024) effects. The ballasted conditions showed more cautious gait patterns with lower walk velocity, step length, and step rate and longer stance time. In the RFM parameters, the slope effect was more notable in the solid conditions due to the gait adaptations in the ballasted conditions. Ballast conditions showed reduced inversion and increased eversion and RFM range. The RFM data were comparable to other typical walking conditions but smaller than those from running.  相似文献   

8.
Predictive modelling of human walking over a complete gait cycle   总被引:1,自引:0,他引:1  
  相似文献   

9.
In this paper, an experimental analysis of overcoming obstacle in human walking is carried out by means of a motion capture system. In the experiment, the lower body of an adult human is divided into seven segments, and three markers are pasted to each segment with the aim to obtain moving trajectory and to calculate joint variation during walking. Moreover, kinematic data in terms of displacement, velocity and acceleration are acquired as well. In addition, ground reaction forces are measured using force sensors. Based on the experimental results, features of overcoming obstacle in human walking are ana- lyzed. Experimental results show that the reason which leads to smooth walking can be identified as that the human has slight movement in the vertical direction during walking; the reason that human locomotion uses gravity effectively can be identified as that feet rotate around the toe joints during toe-off phase aiming at using gravitational potential energy to provide propulsion for swing phase. Furthermore, both normal walking gait and obstacle overcoming gait are characterized in a form that can provide necessary knowledge and useful databases for the implementation of motion planning and gait planning towards overcoming obstacle for humanoid robots.  相似文献   

10.
The gait of current two-legged walking machines differs from that of humans, although the kinematic structures of these machines' legs frequently imitate human limbs. This paper presents a method of generating the trajectories of hip and knee joint angles resulting in a gait pattern similar to that of a human. For this purpose the solutions of coupled van der Pol oscillator equations are utilised. There is much evidence that these equations can be treated as a good model of the central pattern generator generating functional (also locomotional) rhythms in living creatures. The oscillator equations are solved by numerical integration. The method of changing the type of gait by changing appropriate parameter values in the oscillator equations is presented (change of velocity and trajectory of leg-ends). The results obtained enable enhanced control of twolegged walking systems by including gait pattern generators which will assume a similar role to that of biological generators.  相似文献   

11.
The purpose of this study was to determine the subjective and quantitative donor-site morbidity after removal of a free vascularized fibula flap for autoreconstruction. Ten patients and six age-matched, healthy control subjects were included in this study. The postoperative periods ranged from 6 to 87 months. Subjective donor-site morbidity was assessed with a patient questionnaire and the Enneking system. For quantification of donor-site morbidity, gait was evaluated during normal walking, walking under visual and cognitive constraints, and walking at a velocity higher than the preferred one. In general, the patient perception of donor-site morbidity was low. Complaints were frequently mentioned, however, including pain (60 percent), dysesthesia (50 percent), a feeling of ankle instability (30 percent), and inability to run (20 percent). Gait analyses revealed that patients walked at a lower preferred velocity, compared with control subjects. Furthermore, they demonstrated significant increases in the coefficients of variation of stride time during walking under visual and cognitive loads and during walking at a velocity higher than the preferred one, compared with normal walking. These increases were not observed for control subjects. These findings suggest that the reautomatization of gait is affected among patients. This study demonstrates that fibula harvesting is associated with low subjective morbidity but frequent complaints. Walking during complex tasks and at high velocities reveals that restoration of gait is not complete after partial fibulectomy.  相似文献   

12.
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.  相似文献   

13.
Formulation of a 3-D lubrication simulation of a total hip replacement in vivo is presented using a finite difference approach. The goal is to determine if hydrodynamic lubrication is taking place, how thick the joint fluid film is and over what percentage of two gait cycles, (walking and bicycling), the hydrodynamic lubricating action is occurring, if at all. The assumption of rigid surfaces is made, which is conservative in the sense that pure hydrodynamic lubrication is well known to predict thinner films than elasto-hydrodynamic lubrication (EHL) for the same loading. The simulation method includes addressing the angular velocity direction changes and accurate geometry configuration for the acetabular cup and femoral head components and provides a range of results for material combinations of CoCrMo-on-UHMWPE, CoCrMo-on-CoCrMo, and alumina-on-alumina components. Results are in the form of the joint fluid film pressure distributions, load components and film thicknesses of the joint fluid, for the gait cycles of walking and bicycling. Results show hydrodynamic action occurs in only about 10% of a walking gait cycle and throughout nearly 90% of a bicycling gait. During the 10% of the walking cycle that develops hydrodynamic lubrication, the minimum fluid film thicknesses are determined to be between 0.05 micron and 1.1 microns, while the range of film thicknesses for bicycling is between 0.1 micron and 1.4 microns, and occurs over 90% of the bicycling gait. Pressure distributions for these same periods are in the range of 2 MPa to 870 MPa for walking and 1 MPa to 24 MPa for bicycling.  相似文献   

14.
It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters.Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and −10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed.Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors.  相似文献   

15.
Crouch gait, one of the most prevalent movement abnormalities among children with cerebral palsy, is frequently treated with surgical lengthening of the hamstrings. To assist in surgical planning many clinical centers use musculoskeletal modeling to help determine if a patient’s hamstrings are shorter or lengthen more slowly than during unimpaired gait. However, some subjects with crouch gait walk slowly, and gait speed may affect peak hamstring lengths and lengthening velocities. The purpose of this study was to evaluate the effects of walking speed on hamstrings lengths and velocities in a group of unimpaired subjects over a large range of speeds and to determine if evaluating subjects with crouch gait using speed matched controls alters subjects’ characterization as having “short” or “slow” hamstrings. We examined 39 unimpaired subjects who walked at five different speeds. These subjects served as speed-matched controls for comparison to 74 subjects with cerebral palsy who walked in crouch gait. Our analysis revealed that peak hamstrings length and peak lengthening velocity in unimpaired subjects increased significantly with increasing walking speed. Fewer subjects with cerebral palsy were categorized as having hamstrings that were “short” (31/74) or “slow” (38/74) using a speed-matched control protocol compared to a non-speed-matched protocol (35/74 “short”, 47/74 “slow”). Evaluation of patients with cerebral palsy using speed-matched controls alters and may improve selection of patients for hamstrings lengthening procedures.  相似文献   

16.
This is the first time that gait characteristics of broiler (meat) chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10) would be intermediate to those of lame broilers (n = 12) and jungle fowl (n = 10, tested at two ages: immature and adult). Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy) and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers) presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity) presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated with instability. We envisage a key future role for this highly quantitative methodology in pain assessment (associated with broiler lameness) including experimental examination of therapeutic agent efficacy.  相似文献   

17.
Since falling to the side and impacting on or near the hip increase hip fracture risk, we examined the fall direction and pelvis impact location resulting from four disturbances (faint, slip, step down, trip) at three gait speeds (fast, normal, slow) in 14 young adults instructed not to attempt recovery. We hypothesized that certain disturbances such as faints and slips and slow walking speed were more likely to result in an impact on the hip. For each trial, the fall direction, impact location and pelvis impact velocity were measured. The results showed that both disturbance type and gait speed significantly affected fall direction and impact location (analysis of covariance with repeated measures, p< or =0.0001) with a significant interaction (p<0.05). Trips and steps down usually resulted in forward falls, with frontal impacts regardless of gait speed. At fast gait speed, slips and faints also usually resulted in forward falls, with frontal impacts. As gait speed decreased, however, slips usually resulted in sideways or backward falls, with impact on the hip or buttocks, and faints resulted in a greater number of sideways falls, with impact near the hip. Therefore, compared to other disturbances and gait speeds, slipping or fainting while walking slowly was more likely to result in an impact on the hip, suggesting a greater risk for hip fracture. Furthermore, 56% of the impact velocities generated were within one standard deviation of the estimate of the mean impact velocity needed to fracture an elderly femur.  相似文献   

18.
Peripheral arterial disease (PAD) is a manifestation of atherosclerosis resulting in intermittent claudication (IC) or leg pain during physical activity. Two drugs (cilostazol and pentoxifylline) are approved for treatment of IC. Our previous work has reported no significant differences in gait biomechanics before and after drug interventions when PAD patients walked without pain. However, it is possible that the drugs are more efficacious during gait with pain. Our aim was to use advanced biomechanical analysis to evaluate the effectiveness of these drugs while walking with pain. Initial and absolute claudication distances, joint kinematics, torques, powers, and gait velocity during the presence of pain were measured from 24 patients before and after 12 weeks of treatment with either cilostazol or pentoxifylline. We found no significant improvements after 12 weeks of treatment with either cilostazol or pentoxifylline on the gait biomechanics of PAD patients during pain. Our findings indicate that the medications cilostazol and pentoxifylline have reduced relevance in the care of gait dysfunction even during pain in patients with PAD.  相似文献   

19.
This study compares human walking and running, and places them within the context of other mammalian gaits. We use a collision-based approach to analyse the fundamental dynamics of the centre of mass (CoM) according to three angles derived from the instantaneous force and velocity vectors. These dimensionless angles permit comparisons across gait, species and size. The collision angle Φ, which is equivalent to the dimensionless mechanical cost of transport CoTmech, is found to be three times greater during running than walking of humans. This threefold difference is consistent with previous studies of walking versus trotting of quadrupeds, albeit tends to be greater in the gaits of humans and hopping bipeds than in quadrupeds. Plotting the collision angle Φ together with the angles of the CoM force vector Θ and velocity vector Λ results in the functional grouping of bipedal and quadrupedal gaits according to their CoM dynamics—walking, galloping and ambling are distinguished as separate gaits that employ collision reduction, whereas trotting, running and hopping employ little collision reduction and represent more of a continuum that is influenced by dimensionless speed. Comparable with quadrupedal mammals, collision fraction (the ratio of actual to potential collision) is 0.51 during walking and 0.89 during running, indicating substantial collision reduction during walking, but not running, of humans.  相似文献   

20.
Active joint torques are the primary source of power and control in dynamic walking motion. However the amplitude, rate, timing and phasic behavior of the joint torques necessary to achieve a natural and stable performance are difficult to establish. The goal of this study was to demonstrate the feasibility and stable behavior of an actively controlled bipedal walking simulation wherein the natural system dynamics were preserved by an active, nonlinear, state-feedback controller patterned after passive downhill walking. A two degree-of-freedom, forward-dynamic simulation was implemented with active joint torques applied at the hip joints and stance leg ankle. Kinematic trajectories produced by the active walker were similar to passive dynamic walking with active joint torques influenced by prescribed walking velocity. The control resulted in stable steady-state gait patterns, i.e. eigenvalue magnitudes of the stride function were less than one. The controller coefficient analogous to the virtual slope was modified to successfully control average walking velocity. Furture developments are necessary to expand the range of walking velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号