首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The 20 naturally occurring amino acids are characterized by 20 variables: pKNH 2, pKCOOH, pI, molecular weight, substituent van der Waals volume, seven1H and13C nuclear magnetic resonance shift variables, and eight hydrophobicity-hydrophilicity scales. The 20-dimensional data set is reduced to a few new dimensions by principal components analysis. The three first principal components reveal relationships between the properties of the amino acids and the genetic code. Thus the amino acids coded for by adenosine (A), uracil (U), or cytosine (C) in their second codon position (corresponding to U, A, or G in the second anticodon position) are grouped in these components. No grouping was detected for the amino acids coded for by guanine (G) in the second codon position (corresponding to C in the second anticodon position). The results show that a relationship exists between the physical-chemical properties of the amino acids and which of the A (U), U (A), or C (G) nucleotide is used in the second codon (anticodon) position. The amino acids coded for by G (C) in the second codon (anticodon) position do not participate in this relationship.  相似文献   

2.
Abstract

The nucleotide contents of the three codon positions show a number of statistical pairwise correlations, some of which are universal for all analysed genomes. Among the most prominent of these correlations are negative correlations between G and T contents found in genes of all species analysed. The pair A/C, which is complementary to G/T shows similar negative correlation in genes of most species. In the genes of several species including all mammalian genes studied, positive correlations between A and T contents, and G and C contents are found. Since these regularities are observed in all three codon positions they are connected with amino-acid content of proteins. Such correlations may origin from features of the mutation process or/and translation reading frame check. The well-known bias of the preference for G in the first codon position and its deficiency in the second is accompanied by opposite bias in T content. In the third codon position there is no general nucleotide preference, but its content is often biased with regard to GC content of the gene. G and T contents in this case are always shifted in the opposite directions Several ideas are drawn to explain this preference.  相似文献   

3.
Plant chloroplast genes have a codon use that reflects the genome compositional bias of a high A+T content with the single exception of the highly translatedpsbA gene which codes for the photosystem II D1 protein. The codon usage of plantpsbA corresponds more closely to the limited tRNA population of the chloroplast and is very similar to the codon use observed in the chloroplast genes of the green algaChlamydomonas reinhardtii. This pattern of codon use may be an adaptation for increased translation efficiency. A correspondence between codon use of plantpsbA andChlamydomonas chloroplast genes and the tRNAs coded by the chloroplast genome, however, is not observed in all synonymous codon groups. It is shown here that the degree of correspondence between codon use and tRNA population in different synonymous groups is correlated with the second codon position composition. Synonymous groups with an A or T at the second codon position have a high representation of codons for which a complementary tRNA is coded by the chloroplast genome. Those with a G or C at the second position have an increased representation of codons that bind a chloroplast tRNA by wobble. It is proposed that the difference between synonymous groups in terms of codon adaptation to the tRNA population in plantpsbA andChlamydomonas chloroplast genes may be the result of differences in second position composition.  相似文献   

4.
Relationships are examined, using a primitive approximation, between the known general codon bias in genes and resistance of protein tertiary structure to destabilization by random single point mutations. A correlation of these two properties is found in the case of the first codon position while the second and third codon positions are evidently used for other purposes. This study suggests a separation of roles of the particular codon positions in the translation of the genetic message.  相似文献   

5.
Summary We have analyzed the correlation that exists between the GC levels of third and first or second codon position for about 1400 human coding sequences. The linear relationship that was found indicates that the large differences in GC level of third codon positions of human genes are paralleled by smaller differences in GC levels of first and second codon positions. Whereas third codon position differences correspond to very large differences in codon usage within the human genome, the first and second codon position differences correspond to smaller, yet very remarkable, differences in the amino acid composition of encoded proteins. Because GC levels of codon positions are linearly correlated with the GC levels of the isochores harboring the corresponding genes, both codon usage and amino acid composition are different for proteins encoded by genes located in isochores of different GC levels. Furthermore, we have also shown that a linear relationship with a unity slope and a correlation coefficient of 0.77 exists between GC levels of introns and exons from the 238 human genes currently available for this analysis. Introns are, however, about 5% lower in GC, on average, than exons from the same genes.  相似文献   

6.
Veitia RA 《Genomics》2004,83(3):502-507
A compositional analysis of a sample of 50 zebrafish proteins containing at least one alanine run and of their open reading frames (ORFs) has been performed. The sample of poly(Ala) proteins showed a tendency to have runs of other amino acids (His/H, Gln/Q, Ser/S, Pro/P). Their ORFs and the first and second codon positions had higher GC contents than a reference gene set. The "universal" correlation between the GC content of the first+second and third codon positions (GC1+2 vs GC3) does not hold, but I provide an explanation in terms of genomic heterogeneity. Significant correlation between AHQS content and GC3 was obtained, reflecting codon bias favoring G/C at the third codon position of these amino acids. A correspondence analysis (COA) of relative synonymous codon usage showed that the poly(Ala) proteins have a biased distribution according to the second axis of the COA, which correlates with gene expression in zebrafish. A comparison with human is undertaken.  相似文献   

7.
For some 20 proteins the mRNA codon base sequence inferred from the amino acid sequence shows remnants of a regular pattern of the triplet mid-base. The repeat is a 4-triplet unit, but the identity of one specific position in the unit is normally varied. It is assumed the evolutionary forerunners of these proteins were repeat tetrapeptides that also showed this variability.Many of these proteins show a high incidence of guanine as triplet first base and are rich in aspartate and glutamate residues, and a low incidence of guanine as the mid-base. This is seen as resulting from an altered, more restricted, codon availability. It is postulated that for these proteins the triplet first base was once an obligatory guanine, and genetic information was restricted to the triplet mid-base. When a 3-base genetic code became effective intense mutational activity would introduce a second phase in the design of protein sequences.  相似文献   

8.
Differences in the base composition of genomes can occur because of GC pressure, purine-loading pressure (AG pressure) and RNY pressure, for which there are possible functional explanations, and because of the more abstract pressures exerted by individual bases. The graphical approach of Muto and Osawa was used to analyse how bacteriophages and bacteria balance potentially conflicting pressures on their genomes. Phages generally respond to AG pressure by increasing A while keeping T constant, and by decreasing C while keeping G constant. In contrast, bacteria generally increase both A and T, the former more so, and decrease both G and C, the latter more so. These differences largely occur at third codon positions, which are more responsive than first and second codon positions to AG pressure and GC pressure. Phages respond to AG pressure more in the third codon position than bacteria, whereas bacteria respond more in the first codon position than phages. Conversely, bacteria respond to GC pressure more in the third codon position than phages, whereas phages respond more in the first codon position than bacteria. As GC pressure increases, A is traded for C and AG pressure decreases; first and second codon positions, having more A than T, are most responsive to this negative effect of increased GC pressure; third positions either do not respond (phages) or respond weakly (bacteria). In a set of 48 phage-host pairs, degrees of purine loading were less correlated between phage and host than were GC percentages. These results suggest that pressures on conventional and genome phenotypes operate differentially in phages and bacteria, generating both general differences in base composition and specific differences characteristic of particular phage-host pairs. The reciprocal relationship between GC pressure and AG pressure implies that effects attributed to GC pressure may actually be due to AG pressure, and vice versa.  相似文献   

9.
A quantitative measure of error minimization in the genetic code   总被引:7,自引:0,他引:7  
Summary We have calculated the average effect of changing a codon by a single base for all possible single-base changes in the genetic code and for changes in the first, second, and third codon positions separately. Such values were calculated for an amino acid's polar requirement, hydropathy, molecular volume, and isoelectric point. For each attribute the average effect of single-base changes was also calculated for a large number of randomly generated codes that retained the same level of redundancy as the natural code. Amino acids whose codons differed by a single base in the first and third codon positions were very similar with respect to polar requirement and hydropathy. The major differences between amino acids were specified by the second codon position. Codons with U in the second position are hydrophobic, whereas most codons with A in the second position are hydrophilic. This accounts for the observation of complementary hydropathy. Single-base changes in the natural code had a smaller average effect on polar requirement than all but 0.02% of random codes. This result is most easily explained by selection to minimize deleterious effects of translation errors during the early evolution of the code.  相似文献   

10.
Nucleotide sequence of the gene encoding mouse transition protein 2   总被引:1,自引:0,他引:1  
K C Kleene  J Gerstel  D Shih 《Gene》1990,95(2):301-302
The gene encoding the testis-specific basic chromosomal protein, mouse transition protein 2, is split by a single small intron that falls between the first and second nucleotides of a codon. Since the genes encoding protamines 1 and 2 and transition protein 1 in mammals contain a single intron in the same position, protamines and transition proteins appear to be evolutionarily related.  相似文献   

11.
DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea.  相似文献   

12.
In this paper, the base frequency at the second codon position of the 3839 open reading frames (ORFs) in the Vibrio cholerae genome is analyzed. It is shown that according to the base content at this codon site, the ORFs can be divided into two clusters, each containing 673 and 3166 ORFs, respectively. ORFs in the smaller cluster usually have significantly higher T frequency than that of A at the second codon position. For the two clusters of ORFs, there are significant differences in the frequencies for 18 of the 20 amino acids in the encoding proteins. The two clusters of ORFs are also significantly different in their functions. More than half of the known genes involved in transport and binding are included in the smaller cluster, while few genes involved in amino acid biosynthesis, protein synthesis, and so on are included in this cluster.  相似文献   

13.
Gu W  Zhou T  Ma J  Sun X  Lu Z 《Bio Systems》2004,73(2):89-97
The role of silent position in the codon on the protein structure is an interesting and yet unclear problem. In this paper, 563 Homo sapiens genes and 417 Escherichia coli genes coding for proteins with four different folding types have been analyzed using variance analysis, a multivariate analysis method newly used in codon usage analysis, to find the correlation between amino acid composition, synonymous codon, and protein structure in different organisms. It has been found that in E. coli, both amino acid compositions in differently folded proteins and synonymous codon usage in different gene classes coding for differently folded proteins are significantly different. It was also found that only amino acid composition is different in different protein classes in H. sapiens. There is no universal correlation between synonymous codon usage and protein structure in these two different organisms. Further analysis has shown that GC content on the second codon position can distinguish coding genes for different folded proteins in both organisms.  相似文献   

14.
The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2,006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1,836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

15.
The frequencies of occurrence of four bases in the first, second and third codon positions and in the total coding sequences have been calculated by the codon usage table published in 1990 by Ikemura et al. The distribution of frequencies are further analysed in detail by a graphic technique presented recently by us. Formulas expressing the frequencies of four bases in the first and second codon positions in terms of frequencies of amino acids have been given. It is shown by the graphic analysis that for 90 species, in the first codon position the purine bases are dominant and in most cases G is the most dominant base. In the second codon position A is the most dominant base, while G is the least dominant base. In the third codon position the G + C content varies from 0.1 to 0.9, keeping the A + C content equal to 1/2 and G content equal to that of C, approximately. If the frequencies for bases A, C, G and U in the total coding sequences are denoted by a, c, g and u, respectively, it is found that the unequal formula: a2 + c2 + g2 + u2 less than 1/3, is valid for each of the 90 species including the human and E.coli etc.  相似文献   

16.
17.
In a lacZ expression vector (pMC1403Plac), all 64 codons were introduced immediately 3' from the AUG initiation codon. The expression of the second codon variants was measured by immunoprecipitation of the plasmid-coded fusion proteins. A 15-fold difference in expression was found among the codon variants. No distinct correlation could be made with the level of tRNA corresponding to the codons and large differences were observed between synonymous codons that use the same tRNA. Therefore the effect of the second codon is likely to be due to the influence of its composing nucleotides, presumably on the structure of the ribosomal binding site. An analysis of the known sequences of a large number of Escherichia coli genes shows that the use of codons in the second position deviates strongly from the overall codon usage in E. coli. It is proposed that codon selection at the second position is not based on requirements of the gene product (a protein) but is determined by factors governing gene regulation at the initiation step of translation.  相似文献   

18.
Substitution rates at the three codon positions (r1, r2, and r3) of mammalian mitochondrial genes are in the order of r3 > r1 > r2, and the rate heterogeneity at the three positions, as measured by the shape parameter of the gamma distribution (alpha 1, alpha 2, and alpha 3), is in the order of alpha 3 > alpha 1 > alpha 2. The causes for the rate heterogeneity at the three codon positions remain unclear and, in particular, there has been no satisfactory explanation for the observation of alpha 1 > alpha 2. I attempted to dissect the causes of rate heterogeneity by studying the pattern of nonsynonymous substitutions with respect to codon positions in 10 mitochondrial genes from 19 mammalian species. Nonsynonymous substitutions involve more different amino acid replacements at the second than at the first codon position, which results in r1 > r2. The difference between r1 and r2 increases with the intensity of purifying selection, and so does the rate heterogeneity in nonsynonymous substitutions among sites at the same codon position. All mitochondrial genes appear to have functionally important and unimportant codons, with the latter having all three codon positions prone to nonsynonymous substitutions. Within the functionally important codons, the second codon position is much more conservative than the codon position. This explains why alpha 1 > alpha 2. The result suggests that overweighting of the second codon position in phylogenetic analysis may be a misguided practice.   相似文献   

19.
A model is presented for the emergence of a primitive genetic code through the selection of a family of proteins capable of executing the code and catalyzing their own formation from polynucleotide templates. These proteins are assignment catalysts capable of modulating the rate of incorporation of different amino acids at the position of different codons. The starting point of the model is a polynucleotide based polypeptide construction process which maintains colinearity between template and product, but may not maintain a coded relationship between amino acids and codons. Among the primitive proteins made are assumed to be assignment catalysts characterized by structural and functional parameters which are used to formulate the production kinetics of these catalysts from available templates. Application of the model to the simple case of two letter codon and amino acid alphabets has been analyzed in detail. As the structural, functional, and kinetic parameters are varied, the dynamics undergoes many bifurcations, allowing an initially ambiguous system of catalysts to evolve to a coded, self-reproductive system. The proposed selective pressure of this evolution is the efficiency of utilization of monomers and energy. The model also simulates the qualitative features of suppression, in which a deleterious mutation is partly corrected by the introduction of translational error.  相似文献   

20.
We suggest that tRNA actively participates in the transfer of 3D information from mRNA to peptides - in addition to its well-known, "classical" role of translating the 3-letter RNA codes into the one letter protein code. The tRNA molecule displays a series of thermodynamically favored configurations during translation, a movement which places the codon and coded amino acids in proximity to each other and make physical contact between some amino acids and their codons possible. This specific codon-amino acid interaction of some selected amino acids is necessary for the transfer of spatial information from mRNA to coded proteins, and is known as RNA-assisted protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号